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MAi: ith value measured by sensor “B” being tested 
NA: not available 
n: number of measurements 
OPC: optical particle counter 
R2: coefficient of determination 
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s: standard deviation. 
sblk: the standard deviation of the sensor at zero concentration of the measured species. 
SMPS: scanning mobility particle sizer 
tlag: time interval between a step change in input concentration and the first observable 
corresponding change in measurement response 
trise: time interval between initial measurement response and 95% of final response after 
a step increase in input concentration 
t90: mean of t0-90 (the time needed by the sensor to reach 90 % of the final stable value) 
and t90-0 (the time needed to reach zero). 
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1 Executive Summary 
This report presents a review of scientific literature about low-cost sensors available for monitoring 

harmful air pollutants such as particulate matter (PM), carbon monoxide (CO), ozone (O3), and its 
precursors nitrogen dioxide (NO2) and nitric oxide (NO). In the first section, we present a 

background about this emerging area of low-cost sensor (costing less than $100 for the sensor or 
less than $500 for the sensor plus the data acquisition system) based air pollution monitoring. 

Next, we discuss the state-of-the-art in low-cost sensing technology for monitoring different air 
pollutants focusing on their performance characterization. The subsequent section provides future 

research directions and recommendations for future technology development. The 
recommendations in terms of sensor selection for this project are discussed next. Finally, we 

discuss the major conclusions from this literature review. 

2 Introduction 
Outdoor air pollution is one of the major challenges of the 21st century, and is attributed to around 

3.7 million deaths globally (WHO, 2014). It is estimated that 92% of the world’s population lives in 
regions where air pollutant levels are higher than the WHO specified limits (WHO, 2016). In 

addition, air pollution is also responsible for causing environmental damage such as acid rain; 
haze; eutrophication; ozone depletion; damages to crop, forest, and wildlife; and global climate 

change (Fenger, 2009). Thus, there is a global drive to tackle this problem. 

Traditionally, air pollution is monitored by measuring concentrations of various pollutants such as 
CO, NO, NO2 Particulate Matter (PM), at fixed sites by using very accurate and expensive 

instrumentation. These monitoring sites are generally spread in and around cities, and provide 
temporal data (typically hourly) of the concentrations of different pollutants. For example, there 

are around 300 such sites distributed in the whole of UK (DEFRA, 2011). These are insufficient to 
provide accurate information about the spatio-temporal distribution of pollutants or identify 

pollution hotspots. Even though pollutant dispersion models are used to address this issue, their 
applicability is rather limited (Kumar et al, 2015). 

Recent advancements in the field of sensors, digital electronics, and wireless communication 

technology have led to the emergence of a new paradigm for air pollution monitoring. This 
paradigm aims to gather high-resolution spatio-temporal air pollution data by using a ubiquitous 

network of low-cost sensor nodes for monitoring real-time (or near real-time) concentration of 
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different air pollutants. Such data can then be utilized for a variety of air pollution management 

tasks such as: (i) supplementing conventional air pollution monitoring; (ii) improving the link 
between pollutant exposure and human health; (iii) emergency response management, hazardous 

leak detection, and source compliance monitoring; and (iv) increasing community’s awareness 
and engagement towards air quality issues. 

Several review articles have already addressed this emerging area of sensor-based air quality 

management as summarized in Table 1. A majority of these articles focus on the needs, benefits, 
challenges, and future directions of a sensor based monitoring paradigm for different application 

areas (Bhanarkar et al, 2016; Castell et al, 2013; Kumar et al, 2016a; Kumar et al, 2015; Kumar 
et al, 2016b; Snyder et al, 2013; White et al, 2012). A few others discuss emerging sensor 

technologies for monitoring gaseous and/or particulate air pollutants (Aleixandre & Gerbolesb, 
2012; White et al, 2012; Zhou et al, 2015). On-going air quality management campaigns using 

sensor-networks have been reviewed in a few other articles (Castell et al, 2013; Thompson, 2016). 

However, none of these reviews have addressed the aspect of sensor selection for developing a 
low-cost sensor node, costing a few 10’s of dollars. The Air Sensor Guidebook of USEPA (Williams 

et al, 2014b) provides general guidelines regarding sensor selection but these guidelines are open 
ended and leave it for end users to carefully review a sensor’s performance before purchasing it. 

Therefore, we recognize a need for providing scientific guidance to end users in choosing the 

appropriate commercially available sensors based on the user’s requirements and sensor 
characteristics. Through a comprehensive review of grey and scientific literature, we focus on the 

performance assessment of various low-cost sensors (costing less than $100 for the sensor or 
$500 for the sensor plus the data acquisition system) for measuring gaseous and particulate air 

pollutants. Both the particulate matter, and the gaseous pollutants of common interest in outdoor 
environments (i.e., CO, O3, NO, and NO2,) remain the focus of this report. 

Author (year) Study Focus 

Aleixandre & 
Gerbolesb (2012) 

Reviewed available commercial sensors for gaseous pollutants and 
compared their detection ranges with those specified in the 
European Directive on air quality 2008/50/EC.  

White et al (2012) Highlighted the synergistic opportunities available between sensor 
and wireless communication technologies for reducing human 
exposure to air pollutants. 
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Castell et al (2013) Reviewed potential application areas of sensor technologies for air 
quality management. The article also provided a critical analysis of 
commercially available sensors for gas measurements, and 
emphasised the need for performance assessment of emerging 
sensor technologies under real-world conditions. Finally, the article 
summarized 24 different air quality management campaigns based 
on emerging sensor technologies. 

Snyder et al (2013) Discussed the changing paradigm of air pollution monitoring due to 
the emergence of portable air quality sensors. The paper also 
illustrates a few application areas for such sensors in managing air 
quality issues together with key challenges and possible solutions. 

Koehler & Peters 
(2015) 

Reviewed personal exposure assessment to particulate air pollution 
by using novel sensors developed over last 5–10 years. They also 
discussed new metrics (that go beyond traditional mass 
measurements) for evaluating the relationship between particulate 
matter and its health impacts. 

Kumar et al (2015) Reviewed the emergence of low-cost sensing technologies for 
managing air pollution in cities with respect to its need, state-of-the-
art, opportunities, challenges, and future directions. 

Zhou et al (2015) Reviewed state of the art and future perspectives for different types 
of chemo-sensors for monitoring gases involved in environmental 
exhausts (CO2, SO2, NOx, VOCs), biological signalling (H2S, NO, 
O2), and toxic use (nerve gases, sulphur mustard). 

Bhanarkar et al 
(2016) 

Reviewed the issues and challenges in the design and deployment 
of wireless sensor nodes for outdoor air pollution monitoring. 

Kumar et al (2016a) Focused on solving the typical problem of deteriorating indoor air 
quality (IAQ) in building management programs aimed at conserving 
energy by proposing to use real-time sensing. 

Kumar et al (2016b) Highlighted the needs, benefits, challenges, and future outlook of 
monitoring indoor air quality (IAQ) using real-time sensors. The 
review also critically analysed the currently available sensor 
technologies available for monitoring different types of gaseous and 
particulate air pollutants. 

Thompson (2016) Reviewed current and emerging areas of analytical chemistry and 
sensor technology suitable for development of a low-cost sensing 
platform for monitoring air quality together with a summary of recent 
crowd-sourced sensing efforts. 

Table 1: Summary of review articles focused on application of low-cost sensors for managing air pollution (articles 
published since 2010 have been included). 
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3 Current State of the Art 
3.1 PM Sensors 
The concentration of PM in air can be measured by several methods such as filter-based-
gravimetric method, β-attenuation method, optical method, etc. However, the optical technique 

remains the method of choice for low-cost sensing due to its low cost and power requirements 
and quick response times. In this technique, a light source illuminates the particles, and then the 

scattered light from the particles is measured by a photometer. For particles with diameters greater 

than ~0.3 µm, the amount of light scattered is roughly proportional to their mass/number 
concentration. Particles smaller than ~0.3 µm do not scatter enough light, and cannot be detected 

by this method. The particles can be differentiated based on their size by either using an algorithm 
on the signal obtained from the scattered light or by attaching an impactor/filter at the inlet. 

These low-cost optical sensors are available from a variety of manufacturers, and their general 

specifications are given in Table 2. The typical cost is around $10–100 for the sensor alone or 
between $100–500 for the sensing kits, which typically includes the sensor, microprocessor, data-

logger, memory card, battery, and display. Sensors including the Sharp GP2Y1010AU0F, 
Samyoung DSM501A, Shinyei PPD42NS, and Shinyei PPD60PV cannot distinguish between 

particle sizes and typically report the concentration of particles with sizes greater than 0.5 µm as 
a single value for the PM concentration in air. The Dylos sensors rely on size discrimination by 

applying signal processing algorithms on the photometer’s output. However, this method might 
result in significant misclassification of particles (Sousan et al, 2016b).The Sharp DN7C3CA006 

sensor is the only sensor equipped with a virtual impactor that allows particles smaller than 2.5 

µm to pass through the sensing zone. It is not known how the Plantower sensors perform size 
discrimination between particles. Thus, to monitor PM10 or PM2.5 any of these sensors would be 

suitable, if an appropriate mechanism for size selection is applied (if not already provided by the 
manufacturer), except for the Sharp DN7C3CA006 that is clearly suited for monitoring only PM2.5. 

The requirement for a size selection mechanism is less stringent for monitoring PM10 since 
particles larger than 10 µm are difficult to draw in the sensing zone, meaning that the raw output 

of the sensor would roughly correspond to PM10 concentration. 

Many of these sensors have already been used in several air quality monitoring studies such as 
monitoring of ambient wood-smoke (Olivares & Edwards, 2015), risk husk in a rice mil (Zakaria et 
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al, 2014), cigarette smoke in garage (Rajasegarar et al, 2014), PM levels associated with source 

activities  in homes (Olivares et al, 2012), and urban and rural backgrounds (Steinle et al, 2015). 
However, there is a huge gap in the scientific literature regarding issues related to the calibration 

and performance (especially long-term performance) of these sensors, which makes it difficult to 
assess the data quality and make comparisons between different investigations. Only a few 

studies have tested the performance of these low-cost PM sensors. A summary of those 
investigations is given in Table 3. Due to the lack of a standard calibration protocol, different 

studies have used different calibration methods, including chamber and field testing against a 
variety of reference instruments. These studies suggest the need for on-site calibration of 

individual sensors for the aerosol type to be measured since even the sensors of the same type 

can give different outputs under identical conditions. 

Table 4 gives a summary of the performance characteristics of the tested sensors including their 

comparisons with reference measurements; precision (repeatability and reproducibility); limit of 

detection (LOD); sensitivity; and dependence on particle composition, size, humidity, and 
temperature. The sensors generally displayed moderate to excellent linearity (R2 > 0.5) of 

response in all the investigations when compared with reference measurements. The sensors 
typically perform very well (R2 > 0.8) when tested in laboratory conditions; however, their 

performance is generally lower in field deployments. This performance deterioration in real-world 
conditions is to be expected and can be attributed to the changing conditions of particle 

compositions, sizes, and environmental factors such as humidity and temperature. 

Only a few investigations have reported the repeatability characteristics of the sensors as shown 
in Table 4. The sensor repeatability as measured by the CV generally lies between 5 to 30% for 

all the sensors and depends on the concentration range of measurements. Manikonda et al (2016) 
reported the reproducibility characteristics of three different PM sensors by comparing 

measurements conducted with two sensors of the same model under identical chamber 
conditions. Moderate to excellent reproducibility characteristics were reported when the sensor 

were exposed to cigarette smoke with nRMSE = 2.6–22.3% for the different sensors. However, 
the reproducibility characteristics significantly deteriorated when the sensors were exposed to 

Arizona Test Dust (ATD) with nRMSE = 46.1–118.2%. The reported variations between responses 

of sensors of identical models could be due to accumulation of particles in the sensing zone. This 
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effect would especially be pronounced when the sensors were exposure to ATD as compared to 

cigarette smoke since the former comprises of much larger particles than the latter. 

The LOD for the sensors has been reported by several studies as given in Table 4. Wang et al 

(2015) reported that the LOD for the GP2Y1010AU0F, PPD42NS, and DSM501A sensors were 

26.9 µg/m3, 4.59 µg/m3, and 4.28 µg/m3, respectively, for PM concentrations less than 100 µg/m3; 
and 26.1 µg/m3, 6.44 µg/m3, and 11.4 µg/m3, respectively, for PM concentrations less than 1000 

µg/m3. Since the LOD for the GP2Y1010AU0F is reported to be very high it seems to be suitable 
only for monitoring places with high PM concentrations (> 100 µg/m3), whereas the other three 

sensors seem suitable even at low PM concentrations (10–100 µg/m3). However, it should be 
noted that the calibration curve for the GP2Y1010AU0F sensor had a large intercept that was not 

adjusted for while calculating its LOD in the study, which could be a possible reason for its 
seemingly high LOD. Thus, the suitability of the GP2Y1010AU0F sensor for monitoring low PM 

concentrations needs to be further investigated. 

The dependence of sensor output on particle size and composition has been studied by a few 
investigations, and these factors were found to affect the output of the sensors by as much as 10 

times as shown in Table 4 for the different sensors. The sensor output increases with the particle 
size since for the same mass concentration larger particles scatter more light, which results in 

higher reported concentrations (Wang et al, 2015). The difference in particle composition also 

impacts the scattering and absorption of light by them, which in turn influences the sensor output. 
For example, organic materials tend to absorb a higher proportion of incident light as compared 

to inorganic materials that typically absorb negligible radiation. This means that the optical sensors 
will report a much higher concentration of particles with organic compositions as compared to 

those with inorganic compositions even when measuring identical concentrations (Wang et al, 
2015). Thus, it is necessary to calibrate the sensors for the expected range of particle sizes and 

compositions before usage. 

Environmental factors such as humidity and temperature have also been found to influence the 
sensor outputs. Wang et al (2015) studied the impact of humidity on performance of the 

GP2Y1010AU0F, PPD42NS, and DSM501A sensors by using an SMPS as the reference 
instrument under chamber conditions. They found that the outputs of the sensors first increased, 

and then decreased as the humidity was increased from 20 to 90% RH. They attributed this effect 
on a combination of factors including the absorption of radiation by water causing an overestimate 



D1.5 Summary of air quality sensors and recommendations for application 
 

- 14 - 

of particle concentrations, the unsuitability of SMPS as a reference instrument at high humidity 

conditions, and possibility of circuit failure in particle sensors at high humidity conditions. A few 
field investigations have also explored the influence of humidity on the response of Dylos and 

PPD42NS sensors (Gao et al, 2015; Han et al, 2016; Holstius et al, 2014; Jiao et al, 2016). Jiao 
et al (2016) did not find relative humidity to be associated with Dylos sensor’s response; however, 

others found some association between sensor output and humidity. Nevertheless, this 
association was attributed to humidity being a confounding factor rather than having a causal 

relationship with the sensor output. 

The impact of temperature on sensor output was found to be minimum by Wang et al (2015) in 
their chamber experiments, and the difference in response of GP2Y1010AU0F, PPD42NS, and 

DSM501A was between 10 to 20% for temperature variations from 5 to 32°C. A similar conclusion 
was also drawn by two different field investigations (Holstius et al, 2014; Jiao et al, 2016). Although 

Gao et al (2015) reported significant association between temperature and PPD42NS sensor’s 

output, it was likely due to the temperature being a confounding variable. Olivares et al (2012) 
reported that the baseline response of the GP2Y1010AU0F sensor was linearly proportional to 

the temperature from 18 to 32°C; however, they did not report how much error was introduced in 
the measured mass concentrations due to temperature effects. Theoretically, light scattering and 

absorption are independent of temperature, which means that the temperature variations should 
not affect an optical sensor’s output. 

The suitability of such low-cost sensors for long term monitoring of PM is yet to be explored by the 

scientific community. We found only one field investigation by Jiao et al (2016), which reported 
that the value of R2adj improved from 0.45 to 0.56 when “days of use” was added as a predictor 

variable in their linear regression model between the sensor response and the reference 
measurements. Thus, it is possible that the response of PM sensors might change with time due 

to sensor aging and/or dust accumulation; however, it is also possible that “days of use” was just 
a confounding variable. 

Model Size (mm) Weight 
(g) 

Power 
supply 

Maximum 
current 

consumption 
(mA) 

Cost 
($) 

Detectable 
particle size 

Concentration 
range of 

measurement 

Sharp 
GP2Y1010AU0F 46×30×18 15 5 V DC 20 ~10 Greater than 0.5 

µm 0–600 µg/m3 
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Sharp 
DN7C3CA006 50×44×20 52 5 V DC 180 ~20 0.5–2.5 µm 25–500 µg/m3 

Samyoung 
DSM501A 59×45×20 25 5 V DC 90 ~15 Greater than 1.0 

µm 0–1400 µg/m3 

Shinyei 
PPD42NS 59×45×22 24 5 V DC 90 ~15 Greater than 1.0 

µm 
0–28 

particles/cm3 

Shinyei 
PPD60PV 88×60×20 36 5 V DC NA ~250 Greater than 0.5 

µm 
0–70 

particles/cm3 

Dylos DC 1100 
Pro 

178×114×7
6 544 110 V AC NA ~300 

0.5–2.5 µm and 
0.5–10 µm in 
two size bins 

0–106 
particles/cm3 

Dylos DC 1700 
178×114×7

6 544 110 V AC 
or battery NA ~400 

0.5–2.5 µm and 
0.5–10 µm in 
two size bins 

0–106 
particles/cm3 

Plantower PMS 

1003 
65×42×23 NA 5 V DC 120 ~ 20 

0.3–1.0 µm, 
1.0–2.5 µm, and 

2.5–10 µm in 
three size bins 

0–500 µg/m3 

Plantower PMS 

3003 
65×42×23 NA 5 V DC 120 ~ 20 

0.3–1.0 µm, 
1.0–2.5 µm, and 

2.5–10 µm in 
three size bins 

NA 

Alphasense 

OPC-N2 
75×64×60 105 5 V DC 175 ~500  0.38–17 µm in 

16 size bins 
0.1–1500,000 

µg/m3 

Table 2: Specifications of the different PM sensors given their respective manufacturers. 

 

Article Sensor(s)  
tested 

Reference 
equipment 
used 

Test 
conditions 

Test site(s) Summary 

Olivare
s et al 
(2012) 

Sharp's 
GP2Y1010AU0
F 

TSI 
AM510 
‘Sidepak’ 

PM 
concentration: 
~ 0−3000 
µg/m3 and 
temperature: 
18−28 °C. 

Test home 
in Auckland, 
New 
Zealand. 

The sensor’s baseline response 
was found to be linearly 
proportional to temperature, and 
each sensor required individual 
calibration curve. After proper 
calibration, the sensors performed 
very well with an R2 value is 0.99. 

Northcr
oss et 
al 
(2013) 

Dylos (modified 
by authors) 

DustTrak 
8520, 
EBAM 

PM 
concentration: 
0−1200 
µg/m3. 

Urban 
background 
in 
Richmond, 
CA and 
chamber 
experiments. 

Compared the sensor’s 
performance against reference in 
chamber by using polystyrene 
latex spheres, ammonium 
sulphate, and wood-smoke, and 
also tested it in urban ambient 
setting. The sensor’s detection 
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limit was found to be less than 1 
µg/m3, and the resolution was 
better than 1 µg/m3. 

Holstiu
s et al 
(2014) 

Shinyei 
PPD42NS 

BAM 
1020, 
GRIMM, 
DustTrak, 
Dylos 
DC1700 

PM 
concentration: 
~0–25 µg/m3, 
humidity: 
~10–60% RH, 
and 
temperature: 
~15–40 °C. 

Regulatory 
monitoring 
site in 
Oakland. 

Found that the sensor had 
reasonably good accuracy when 
compared with 1h-averaged and 
24h-averaged BAM data, with the 
R2 being equal to 0.60 and 0.72, 
respectively. Temperature and 
humidity were found to have 
negligible association with the 
sensor measurements. 

Alvarad
o et al 
(2015) 

Sharp GP2Y10 
and Samyoung 
DSM501A 

DustTrak 
8520 

PM 
concentration: 
~ 0−150 
µg/m3. 

Chamber 
experiments. 

The Samyoung sensor was found 
to have a low coefficient of 
correlation (R2 ~ 0.5), while the 
Sharp sensor had a good 
correlation coefficient (R2> 0.9) 
with the reference. The calibrated 
Sharp sensor was then used for 
monitor dust particles after 
blasting at open-pit mine sites. 

Austin 
et al 
(2015) 

ShinyeiPPD42
NS 

TSI 
Aerosol 
Particle 
Sizer 
(APS) 
model 
3321 

PM 
concentration: 
~0–800 
µg/m3. 

Chamber 
experiments. 

The sensors were found to have a 
linear response for PM 
concentrations below 50 µg/m3, 
and thereafter a non-linear 
response, which saturated at 800 
µg/m3. It was also found that they 
can be reliably used for measuring 
particles from sizes 0.5–2.5µm; 
however, each sensor needs to be 
individually calibrated. 

Gao et 
al 
(2015) 

ShinyeiPPD42
NS 

DustTrak, 
E-BAM, 
and 
MiniVol 

PM 
concentration: 
~77–889 
µg/m3, 
humidity: 3–
17% RH, and 
temperature: 
−3.5 to 19.2 
°C. 

Highly 
polluted 
urban area 
in Xi'an, 
China. 

The sensors performed very well 
during the calibration phase with 
R2 > 0.85; however, during the 
field deployment, the performance 
was moderate (R2 = 0.53). These 
differences were attributed to 
differences in environmental 
conditions during the two periods. 

Olivare
s & 
Edward
s 
(2015) 

SharpGP2Y101
0AU0F 

TEOM-
FDMS 

PM 
concentration: 
~ 0−220 
µg/m3 and 
temperature: 
6−26 °C. 

An air 
quality 
monitoring 
site at Coles 
Place, New 
Zealand and 

The sensor’s baseline response 
was found to be stable and slightly 
dependent on temperature during 
chamber experiments; however, 
during field deployment the 
sensor’s output exhibited a 
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chamber 
experiments. 

significant drift and dependence 
on temperature.  

Steinle 
et al 
(2015) 

Dylos DC1700 TEOM-
FDMS 

PM 
concentration: 
~0−30 µg/m3. 

An urban 
and rural 
sites around 
Edinburgh, 
Scotland 

The sensor was found to 
performed well at both locations 
(R2 = 0.9 at the rural background 
site, and R2 = 0.7 at the urban 
background site with respect to 
reference), and its performance 
did not seem to have been 
impacted by aerosol composition. 
The investigation then used the 
sensor for personal exposure 
measurements. 

Wang 
et al 
(2015) 

Shinyei 
PPD42NS, 
Samyoung 
DSM501A, and 

Sharp 
GP2Y1010AU0
F 

SMPS, 
SidePak, 
AirAssureT

M 

PM 
concentration: 
~50–5000 
µg/m3; 
humidity: 20–
90% RH, and 
temperature: 
5–32°C 

Chamber 
experiments.  

Tested the sensors for six 
performance criteria: (1) linearity 
of response, (2) precision of 
measurement, (3) Limit of 
Detection (LOD), (4) dependence 
on particle composition, (5) 
dependence on particle size, and 
(6) relative humidity and 
temperature influences. The 
sensors were found to be suitable 
for monitoring air pollution in 
heavily polluted areas; however, 
they must be individually 
calibrated before deployment. 

Han et 
al 
(2016) 

DylosDC1700 Grimm 11-
R 

PM 
concentration: 
~0−400 
µg/m3, 
humidity: 26–
91% RH, and 
temperature: 
6−29 °C. 

Backyard of 
an urban 
home. 

The study found good correlation 
(R2 = 0.8) between the sensor 
measurements and the reference 
equipment for PM2.5; however the 
correlation was moderate (R2 = 
0.5) for PM10−2.5. Humidity and 
particle size were found to impact 
the association between the 
sensor and reference. 

Jiao et 
al 
(2016) 

Dylos DC1100-
Pro, Dylos 
DC1100, 
Shinyei 
PPD60PV, 
Shinyei 
PPD42NS 

MetOne 
BAM 1020 
PM2.5 
monitor 

Humidity: 
11−100% RH 
and 
temperature: 
−12 to 33 °C. 

Locations in 
and around 
a regulatory 
monitoring 
site in 
Decatur 
area in 
Atlanta, GA 

The study reported variable 
performance characteristics for 
three different low-cost sensors 
with the R2 values varying from 
0.16–0.45 against reference 
measurements. 

Maniko
nda et 

Samyoung 
DMS501A, 
Dylos 1100 Pro, 

TSI 3321 
APS, 
Grimm 

PM 
concentration: 

Chamber 
experiments. 

The study generally reported 
good R2 values between the low-
cost sensors and the reference 
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al 
(2016) 

Dylos 1700, 
Sharp 
GP2Y1010AU0
F 

1.109 
laser 
aerosol 
monitor, 
and TSI 
FMPS 
3091. 

~ 0–500 
µg/m3. 

monitors; however, the sensors 
need to be carefully calibrated 
before usage. 

Zikova 
et al 
(2016) 

Samyoung 
DMS501A 

Grimm 
1.109 

Indoor 
campaign: 
PM 
concentration: 
4.6 µg/m3 
(median 
value), 
humidity: 60–
70% RH, and 
temperature: 
20−27 °C. 
Outdoor 
campaigns: 
PM 
concentration: 
7.3–7.6 µg/m3 
(median 
values), 
humidity: 40–
93% RH, and 
temperature: 
−7.8−15 °C. 

One Indoor 
and two 
outdoor 
campaigns 
conducted 
inside and 
outside a 
residence in 
Potsdam, 
NY. 

The study reported R2 values 
between 0.07–0.46 when the low 
cost sensors were compared with 
the reference instrument. The 
sensor performance was found to 
improve when the averaging time 
of the measurements and the PM 
concentration were increased. 

Sousan 
et al 
(2016b) 

DylosDC1700, 
and Sharp 
models 
GP2Y1010AU0
F and 
DN7C3CA006 

APS, 
SMPS 

PM 
concentration: 
~30–6500 
µg/m3. 

Chamber 
experiments. 

Found that even the same type of 
sensors needed to be calibrated 
individually for a particular type of 
aerosol. However, once calibrated 
the sensors performed quite well 
when compared to the reference 
instrumentation (R2 between 
0.95–0.99), and also 
demonstrated good precision (CV 
< 8%). 

Kelly et 
al 
(2017) 

Plantower 
models PMS 
1003 and PMS 
3003, and 
Shinyei 
PPD42NS 

Grimm 
1.109, 
DustTrack 
II 8530, 
TEOM, 
BAM, and 
gravimetri
c 
methods. 

Wind tunnel 
measurement
s: PM 
concentration: 
200 – 850 
µg/m3 (PM2.5).  
Field 
measurement
s: PM 
concentration: 

Wind tunnel 
experiments 
and field 
measureme
nts in an 
urban 
residential 
area of Salt 

The study reported that the 
PMS1003/3003 sensors 
performed better than the reported 
performance of other low-cost PM 
sensors from other investigations, 
when compared with FRM 
measurements under similar 
conditions. 
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0–70.6 µg/m3, 
humidity: 27–
89% RH, and 
temperature: 
−8.9−15.9 °C. 

Lake City, 
Utah, USA 

Jovaše
vić-
Stojano
vić et al 
(2015) 

Dylos 1700 TSI 3330 
Optical 
Particle 
Sizer and 
Grimm 
1.108 

PM 
concentration: 
~1–1000 
#/cm3, 
indoors and 
~10–220 
µg/m3, 
outdoors. 

Indoor 
experiments 
inside a 
laboratory 
and field 
studies at an 
automatic 
monitoring 
station in 
Serbia. 

The study reported R2 values 
between 0.00–0.95 and 0.74–
0.84, when the low-cost sensor 
was compared with the reference 
instrument indoors and outdoors, 
respectively. 

Sousan 
et al 
(2016a) 

Alphasense 
OPC-N2 

APS, 
SMPS 

PM 
concentration: 
5–10,000 
µg/m3 (PM10). 

Chamber 
experiments. 

The study compared the 
performance of the low-cost 
Alphasense OPC-N2 with a 
research grade and significantly 
expensive OPC (Grimm 1.108), 
and found that the low-cost sensor 
can provide similar level of 
performance, if site-specific 
calibration is performed. 

William
s et al 
(2014a) 

Dylos DC 1100 Grimm 
EDM 180 
(FEM) 

PM 
concentration: 
0–46 µg/m3, 
humidity: 19–
100% RH, 
and 
temperature: 
−3 to 26 °C. 

Field 
experiments 
conducted in 
Durham, 
NC, USA 

The study reported that the R2 = 
0.54 between outputs from the 
Dylos DC100 sensor and a 
reference equipment. It was also 
found that the output from the 
Dylos was slightly affected by 
humidity but not temperature. 

Table 3: Summary of articles focused on performance assessment of low-cost PM sensors for air pollution monitoring 

 

Model Performance assessment 

Sharp 
GP2Y1010AU0F 

Comparison with reference measurements 
R2 = 0.99 versus photometer in a test home (Olivares et al, 2012). 
R2 = 0.92–0.98 versus photometer in chamber tests (Alvarado et al, 2015). 
R2 = 0.72 versus TEOM-FDMS in an air monitoring site in Coles Place, New 
Zealand (Olivares & Edwards, 2015). 
R2 = 0.42–0.93 and R2 = 0.69–0.98 versus three different reference instruments 
in chamber tests with cigarette smoke and ATD, respectively, as part of the 
AirAssure platform (Manikonda et al, 2016). 
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R2 = 0.84–0.99 versus three different reference instruments in chamber tests with 
cigarette smoke as part of the UBAS platform (Manikonda et al, 2016). 
R2 > 0.95 versus SMPS and APS in chamber tests (Sousan et al, 2016b). 
R2 = 0.98–0.99 versus photometer in chamber tests (Wang et al, 2015). 
Repeatability 
CV < 10%, for concentrations between 100 to 1000 µg/m3, and CV ≈ 25% for 
concentrations below 100 µg/m3 in chamber experiments (Wang et al, 2015) 
CV < 6% during chamber experiments (Sousan et al, 2016b). 
Reproducibility 
nRMSE = 2.6–4.0% and 97–118% between identical sensors while measuring 
cigarette smoke and ATD, respectively, during chamber tests (Manikonda et al, 
2016). 
LOD 

26.9 µg/m3 for concentrations < 100 µg/m3, and 26.1 for concentrations < 1000 
µg/m3 (Wang et al, 2015) 
Dependence on particle composition 
Particles with different composition (atomized aqueous solutions of NaCl, 
C12H22O11, and NH4NO3) but roughly similar size distribution and mass 
concentration were found to give up to ten times difference in sensor output when 
compared to the SMPS (Wang et al, 2015). 
Particles with different compositions (aerosolized salt solution, Arizona road dust, 
diesel fumes, and welding fumes) but same mass concentration were found to 
give up to three times difference in sensor output when compared to the SMPS + 
APS data corrected by gravimetric measurements (Sousan et al, 2016b). 
Dependence on particle size 
Sensor’s output increased as the particle sizes increased for the same mass 
concentration measured by the SMPS. Particles with different sizes (300 nm, 600 
nm, and 900 nm) were found to give up to 75% difference in sensor output (Wang 
et al, 2015). 
Dependence on humidity 
Sensor’s output first increased as the humidity increased from 20% RH to 67% 
RH, and then decreased as the humidity increased further to 90% RH, for the 
same mass concentration measured by the SMPS. The maximum difference in 
output was about 40% (Wang et al, 2015). 
Dependence on temperature 
Baseline response linearly proportional to temperature between 18 to 32 °C 
(Olivares et al, 2012). 
Sensor’s response probably not dependent on temperature (Olivares & Edwards, 
2015). 
Less than 15% difference in sensor output for temperatures between 5 to 32 °C 
for the same mass concentration (Wang et al, 2015). 
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Sharp 
DN7C3CA006 

Comparison with reference measurements 
R2 > 0.98 versus SMPS and APS during chamber tests (Sousan et al, 2016b). 
Repeatability 
CV < 8% during chamber experiments (Sousan et al, 2016b). 
Dependence on particle composition 
Particles with different compositions (aerosolized salt solution, Arizona road dust, 
diesel fumes, and welding fumes) but same mass concentration were found to 
give up to 1.2 times difference in sensor output when compared to the SMPS + 
APS data corrected by gravimetric measurements (Sousan et al, 2016b). 

Shinyei 
PPD42NS 

Comparison with reference measurements 
R2 = 0.90–0.94 versus OPC, R2 = 0.64–0.70 versus photometer, and R2 = 0.55-
0.60 versus BAM, measured in an urban area in California, USA (Holstius et al, 
2014). 
R2 = 0.66–0.99 versus an APS for concentrations below 50 µg/m3, and a non-
linear response thereafter during laboratory tests (Austin et al, 2015). 
R2 = 0.87–0.98 versus photometer, R2 = 0.85–0.92 versus BAM, and R2 = 0.53 
versus gravimetric measurements, measured at a highly polluted site in China 
(Gao et al, 2015). 
R2 = 0.93–0.96 versus photometer in chamber tests (Wang et al, 2015). 
R2 < 0.16 versus a BAM measured in a regulatory monitoring site in suburban 
Atlanta, Georgia, USA (Jiao et al, 2016). 
R2 = 0.50–0.80 versus reference measurements in wind-tunnel experiments (Kelly 
et al, 2017). 
Repeatability 
CV < 10%, for concentrations between 400 to 1000 µg/m3, and CV = 12–28% for 
concentrations below 400 µg/m3 in chamber experiments (Wang et al, 2015). 
LOD 
1 µg/m3 for concentration < 50 µg/m3 (Austin et al, 2015). 
4.59 µg/m3 for concentrations < 100 µg/m3, and 6.44 for concentrations < 1000 
µg/m3 (Wang et al, 2015). 
Dependence on particle composition 
Particles with different composition (atomized aqueous solutions of NaCl, 
C12H22O11, and NH4NO3) but roughly similar size distribution and mass 
concentration were found to give up to three times difference in sensor output 
when compared to the SMPS (Wang et al, 2015). 
Dependence on particle size 
Sensor’s output increased as the particle size increased from 0.75 to 6 µm for the 
same mass concentration measured by the APS (Austin et al, 2015). 
Sensor’s output increased as the particle sizes increased for the same mass 
concentration measured by the SMPS. Particles with different sizes (300nm, 
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600nm, and 900nm) were found to give up to six times difference in sensor output 
(Wang et al, 2015). 
Dependence on humidity 
Sensor’s response moderately associated with humidity between 15 to 60% RH 
(Holstius et al, 2014). 
Sensor response significantly associated with humidity between 3 to 17% RH 
(Gao et al, 2015). 
Sensor’s output first increased as the humidity increased from 20% RH to 67% 
RH, and then decreased as the humidity increased further to 90% RH, for the 
same mass concentration measured by the SMPS. The maximum difference in 
output was about 4 times (Wang et al, 2015). 
Dependence on temperature 
Minimal effect on sensor output (R2 = 0.01) for temperatures between 15 to 40 °C 
(Holstius et al, 2014). 
Sensor response significantly associated with the temperature (Gao et al, 2015). 
10–20% difference in sensor output for temperatures between 5 to 32 °C for the 
same mass concentration (Wang et al, 2015). 

Shinyei 
PPD60PV 

Comparison with reference measurements 
R2 = 0.43 versus a BAM measured in a regulatory monitoring site in suburban 
Atlanta, Georgia, USA. (Jiao et al, 2016) 

Samyoung 
DSM501A 

Comparison with reference measurements 
R2 ~ 0.5 versus photometer during chamber tests (Alvarado et al, 2015). 
R2 = 0.88–0.90 versus photometer in chamber tests (Wang et al, 2015). 
R2 = 0.92–0.97 and R2 = 0.58–0.97 versus three different reference instruments 
in chamber tests with cigarette smoke and ATD, respectively (Manikonda et al, 
2016). 
R2 = 0.28–0.29 and R2 = 0.07–0.46 versus reference during tests inside and 
outside a residence, respectively (Zikova et al, 2016). 
Repeatability 
CV < 10%, for concentrations between 300 to 1000 µg/m3, and CV = 10–28% for 
concentrations below 300 µg/m3 in chamber experiments (Wang et al, 2015). 
Reproducibility 
nRMSE = 22.3% and 52.7% between identical sensors while measuring cigarette 
smoke and ATD, respectively, during chamber tests (Manikonda et al, 2016). 
Variable sensor-to-sensor reproducibility (Zikova et al, 2016). 
LOD 
4.28 µg/m3 for concentrations < 100 µg/m3, and 11.4 for concentrations < 1000 
µg/m3 (Wang et al, 2015). 
8–10 µg/m3 (Zikova et al, 2016). 
Dependence on particle composition 
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Particles with different composition (atomized aqueous solutions of NaCl, 
C12H22O11, and NH4NO3) but roughly similar size distribution and mass 
concentration were found to give up to 100% difference in sensor output when 
compared to the SMPS (Wang et al, 2015). 
Dependence on particle size 
Sensor’s output increased as the particle size increased for the same mass 
concentration measured by the SMPS. Particles with different sizes (300nm, 
600nm, and 900nm) were found to give up to 2.5 times difference in sensor output 
(Wang et al, 2015). 
Dependence on humidity 
Sensor’s output first increased as the humidity increased from 20% RH to 67% 
RH, and then decreased as the humidity increased further to 90% RH, for the 
same mass concentration measured by the SMPS. The maximum difference in 
output was about 100% (Wang et al, 2015) 
Dependence on temperature 
10–20% difference in sensor output for temperatures between 5 to 32 °C for the 
same mass concentration (Wang et al, 2015). 

Dylos DC 
models 1100 Pro 
and 1700 (both 
models use 
identical particle 
detection 
mechanism) 
 
 

 

Comparison with reference measurements 
R2 = 0.97–0.99 and R2 = 0.81–0.99 versus photometer in chamber and field 
experiments, respectively (Northcross et al, 2013). 
R2 > 0.98 versus OPC, R2 = 0.78 versus photometer, and R2 = 0.58 versus BAM 
during field measurements (Holstius et al, 2014). 
R2 = 0.9 and 0.7 versus TEOM-FDMS at a rural and urban background sites, 
respectively (Steinle et al, 2015). 
R2 = 0.78 and R2 = 0.48 versus OPC for PM2.5 and PM>2.5, respectively, in an 
urban home’s backyard (Han et al, 2016). 
R2 = 0.40–0.45 versus a BAM measured in a regulatory monitoring site in 
suburban Atlanta, Georgia, USA (Jiao et al, 2016). 
R2 = 0.87–0.95 and R2 = 0.64–0.93 versus three different reference instruments 
in chamber tests with cigarette smoke and ATD, respectively (Manikonda et al, 
2016). 
R2 > 0.91 versus SMPS and APS during chamber experiments (Sousan et al, 
2016b). 
R2  = 0.00–0.44 and R2 = 0.77–0.95 versus a TSI 3330 OPS  in an indoor space 
with and without a strong PM source, respectively (Jovašević-Stojanović et al, 
2015). 
R2  = 0.74–0.84 versus Grimm 1.108 at automatic monitoring station in Serbia 
(Jovašević-Stojanović et al, 2015). 
R2 = 0.55 versus an FEM PM analyser (Grimm EDM180) during field 
measurements (Williams et al, 2014a). 
Repeatability 
CV < 8% during chamber experiments (Sousan et al, 2016b). 
Reproducibility 
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nRMSE = 13.4% and 46.1% between identical sensors while measuring cigarette 
smoke and ATD, respectively, during chamber tests (Manikonda et al, 2016).  
LOD 
< 1 µg/m3 (Northcross et al, 2013). 
Resolution 
< 0.1 µg/m3 (Northcross et al, 2013). 
Dependence on particle composition 
Changes in aerosol composition (from continental air containing secondary 
inorganic aerosols to cleaner, sea salt dominated air originating over the Atlantic 
Ocean) did not seems to influence the performance of Dylos as compared to the 
reference (Steinle et al, 2015). 
Particles with different compositions (aerosolized salt solution, Arizona road dust, 
diesel fumes, and welding fumes) but same mass concentration were found to 
give up to 3.5 times difference in sensor output when compared to the SMPS + 
APS data corrected by gravimetric measurements (Sousan et al, 2016b). 
Dependence on particle size 
ηd < 0.05 for particles less than 0.3µm in size, and ηd = 0.6–1.1 for sizes between 
1.3–5 µm (Sousan et al, 2016b). 
ηd ≈ 1 versus OPC for PM2.5 at mass median diameters (MMD) from 1.7 to 4.4 
µm. ηd ≈ 0.25, ηd ≈ 0.75, and ηd ≈ 4 versus OPC for PM10−2.5at MMD = 1.7 µm, 2.9 
µm, and 4.4 µm, respectively (Han et al, 2016). 
Dependence on humidity 
ηd ranges from 0.8–1.1 and 0.5–1.6 for PM2.5 and PM>2.5, respectively, at humidity 
between 52–57% RH. ηd > 1.3 and ηd > 2.0 for PM2.5 and PM>2.5, respectively, at 
humidity between 61–71% RH (Han et al, 2016). 
No improvement in R2adj when humidity was added as a predictor variable (Jiao et 
al, 2016). 
Slight correlation between sensor output and humidity (R2 = 0.18) (Williams et al, 
2014a). 
Dependence on temperature  
Very slight improvement in R2adj (from 0.45 to 0.48) when temperature was added 
as a predictor variable (Jiao et al, 2016). 
No correlation between sensor output and temperature (R2 = 0.03) (Williams et al, 
2014a). 
Days of use 
Significant improvement in R2adj (from 0.45 to 0.56) when “days of use” was added 
as a predictor variable (Jiao et al, 2016). 

Plantower 
PMS1003 

Comparison with reference measurements 
R2 = 0.69–0.99 and R2 = 0.82–0.93 versus reference measurements in wind-
tunnel and field experiments, respectively (Kelly et al, 2017). 
LOD 
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0.7–3.2 µg/m3 under laboratory conditions (Kelly et al, 2017). 
10.5 µg/m3 during field testing (Kelly et al, 2017). 

Plantower 
PMS3003 

Comparison with reference measurements 
R2 = 0.73–0.97 versus reference measurements in wind-tunnel experiments (Kelly 
et al, 2017). 

Alphasense 
OPC-N2 

Comparison with reference measurements 
R2 = 0.94–0.99 versus SMPS and APS during chamber tests (Sousan et al, 
2016a). 
Repeatability 
CV = 4.2–16% during chamber experiments (Sousan et al, 2016a). 
Dependence on particle composition 
Particles with different compositions (aerosolized salt solution, Arizona road dust, 
diesel fumes, and welding fumes) but same mass concentration were found to 
give up to 30  times difference in sensor output when compared to the SMPS + 
APS data corrected by gravimetric measurements (Sousan et al, 2016a). 
Dependence on particle size 
ηd = 0.83–1.01 for particles sizes between 0.5–5 µm (Sousan et al, 2016a). 

 Table 4: A summary of performance characteristics of low-cost PM sensors 

3.2 Gas Sensors 
To measure gaseous air pollutants, there are currently two types of low-cost sensors available in 

the market: (1) metal-oxide-semiconductor (MOS) sensors and (2) Electrochemical (EC) sensors. 

The MOS sensors employ a metal oxide that changes its electrical properties (typically resistance) 

when exposed to the target gas. The change in the resistance can be easily measured and 
corresponds to the concentration of the gas. Such sensors are small in size (a few millimetres), 

lightweight (weighing a few grams), inexpensive (~$10), have quick response times, low detection 

limits and power requirements (~100 mW) (Aleixandre & Gerbolesb, 2012; Piedrahita et al, 2014). 
However, they have a non-linear response curve; and suffer from sensitivity to changes in 

humidity, temperature, pressure, and interfering gases (Spinellea et al, 2016). 

The EC sensors used for air pollution monitoring are generally operated in amperometric mode, 
wherein the electrochemical reactions between the target gas and an electrolyte produce a current 

dependent on the gaseous concentration. The sensors typically consist of three electrodes, 
termed as working, counter, and reference. The target gas undergoes electrolysis (oxidation or 

reduction) at the working electrode, and generates electric charge which is balanced by the 
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reaction at the counter electrode. The electric current can be easily measured and corresponds to 

the concentration of the gas, and the response is either linear or logarithmic (Aleixandre & 
Gerbolesb, 2012). The reference electrode is typically employed in the sensor to ensure that the 

working electrode is maintained at the correct operating potential. These sensors typically have 
lower detection limits, power requirements (~100 µW), and sensitivity to changes in environmental 

conditions and interfering gases than MOS sensors, but are also slightly larger (few tens of 
millimetres in size), and more expensive (~$100) (Aleixandre & Gerbolesb, 2012; Piedrahita et al, 

2014). 

Low-cost gas sensors have been used in several air quality campaigns ranging from background 
pollutant measurements at rural and urban sites (Jiang et al, 2016; Spinelle et al, 2015b; Sun et 

al, 2016), measurements of roadside pollution (Mead et al, 2013; Popoola et al, 2016), mobile 
vehicular measurements (Hu et al, 2011; Suriano et al, 2015), source attribution (Heimann et al, 

2015), and personal exposure monitoring (Jiang et al, 2011; Piedrahita et al, 2014). However, 

their performance characteristics are generally not well studied, and there exist only a few studies 
focused on assessment of sensors for monitoring gaseous pollutants as summarized in Table 5. 

Based on those studies, we have evaluated the performance of low-cost sensors for O3, NO2, NO, 
and CO in the following sub-sections.  
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Article Sensor(s) tested Reference 
instruments used 

Test 
conditions 

Test site(s) Summary 

Mead et 
al 
(2013) 

1. Alphasense 
CO-AF (CO) 

2. Alphasense 
NO-A1 (NO) 

3. Alphasense 
NO2-A1 
(NO2) 

Laboratory: 
Calibration gas 
standards. 
Field testing: 
Thermo 
Environmental 
Model 42C 
chemiluminescence 
analyser 
(NO/NO2/NOx) 

Chamber 
experiments: 
CO: 0−160 
ppb, NO:  
0−130 ppb, 
and NO2: 
0−70 ppb 

Laboratory 
calibration 
and 
roadside 
testing in 
and around 
Cambridge, 
UK 

The sensors performed well 
during chamber experiments 
and roadside testing. The R2 
was greater than 0.99 during 
chamber testing for all the three 
sensors. The performance of 
the sensors was also found to 
be acceptable during roadside 
testing; however, the sensor 
outputs needs to be corrected 
by taking into account the 
effects of temperature, 
humidity, and interfering gases. 

Piedrahi
ta et al 
(2014) 

1. SGX MICS-
5525 (CO) 

2. SGX MICS-
2710 (NO2) 

3. SGX MICS-
2611 (O3) 

1. Thermo Electron 
48c monitor 
(CO), 

2. Teledyne 200E 
(NO2) 

3. Teledyne 400E 
(O3) 

Chamber 
experiments: 
Temperature
: 29−44°C, 
humidity: 
20−60% RH, 
and CO: 
0−4.2 ppm. 
Field testing: 
Temperature
: ~ 0−35°C. 

Chamber 
experiments 
and field 
testing at an 
air 
monitoring 
station in 
Denver, 
Colorado, 
and 
chamber 
experiments. 

Proposed different calibration 
equations for converting the 
MOS sensor signal into 
concentration values. The 
calibration standard errors for 
CO, NO2, and O3 sensors were 
found to be 0.45 ppm, 8.4 ppb, 
and 6.1 ppb, respectively, 
during their field tests. 

Williams 
et al 
(2014c) 

1. AGT 
Environmenta
l Sensor (O3 
and NO2) 

2. Dynamo 
sensor (O3) 

3. MICS 2611 
(O3) 

4. MICS 2710 
(NO2) 

5. Alphasense 
NO2-A1 
(NO2) 

1. Thermo 42C 
chemiluminescen
ce Nitrogen 
Oxides Analyser 
(NO2/NO/NOx) 

2. 2B Model 205 
UV Absorption 
Analyser (O3) 

3. Thermo Model 
43C Pulsed 
Fluorescence 
Analyser (SO2) 

Temperature
: ~ 5−45 °C 
and 
humidity: 
20−100% 
RH 

Glass 
chamber in 
laboratory 

Evaluated the performance of 
various NO2 and O3 sensor for 
the following criteria: (1) 
linearity of response, (2) 
precision, (3) limit of detection 
(LOD), (4) resolution, (5) 
response time, and (6) 
interference equivalents. 

Moltcha
nov et al 
(2015) 

1. Aeroqual 
SM50 (O3) 

Monitors at an 
AQM station. 

Hot and 
humid 
conditions. 

A residential 
neighbourho
od and an 
AQM station 
in the 
coastal city 

The ozone sensors performed 
well against the reference; 
however, there was a frequent 
need for calibration owing to the 
aging of sensors. To overcome 
this issue, the study proposed a 



D1.5 Summary of air quality sensors and recommendations for application 
 

- 28 - 

of Haifa, 
Israel 

calibration procedure that 
utilizes the data from nearby 
AQM stations. 

Spinelle 
et al 
(2015a) 

1. Alphasense 
O3B4 (O3) 

2. Citytech 
O3_3E1F (O3) 

3. Alphasense 
NO2B4 (NO2) 

4. Citytech 
NO2_3E50 
(NO2) 

5. CairPolCairCli
p NO2 ANA 
(NO2) 

Thermo 42C 
Chemiluminescenc
e Nitrogen Oxides 
Analyser 
(NO2/NO/NOx) 

O3: 0–110 
ppb, 
NO2: 0–150 
ppb, 
humidity: 
40−80% RH, 
and 
Temperature
: 12−32°C. 

Exposure 
chamber in 
laboratory 
with the 
ability to 
generate 
gaseous 
mixtures and 
independent
ly control 
humidity, 
temperature, 
and wind 
velocity. 

Tested different 
electrochemical sensors for 
measuring NO2 and O3 in an 
exposure chamber. They found 
that the calibration lines were 
linear for the tested sensors. 
They also explored the 
performance of the sensors for 
parameters including: (i) 
repeatability and LOD, (ii) drift, 
(iii) temperature and humidity 
effects, (iv) interference by 
gases, and (v) hysteresis effect. 

Spinelle 
et al 
(2015b) 

1. Alphasense 
O3B4 (O3) 

2. Citytech 
O3_3E1F (O3) 

3. Alphasense 
NO2B4 (NO2) 

4. Citytech 
NO2_3E50 
(NO2) 

5. SGX-
Sensotech 
MICS-2710 
(NO2) 

6. SGX-
Sensotech 
MICS-4514 
(NO2) 

7. CairPolCairCli
p NO2 ANA 
(NO2) 

1. Thermo 
Environment 49C 
UV Photometric 
Analyser (O3) 

2. Thermo 42C 
Chemiluminesce
nce Nitrogen 
Oxides Analyser 
(NO2/NO/NOx) 

O3: 1–83 
ppb, NO2: 
1–63 ppb, 
humidity: 
14–99% RH, 
and 
Temperature
: −1 to 30 
°C. 

5 months 
duration at a 
semi-rural 
area in Italy 

Compared the performances of 
several field calibration 
methods for low-cost sensors 
for NO2 and O3, including 
simple and multiple linear 
regressions and artificial neural 
network (ANN). It was found 
that the ANN method performed 
better compared to the linear 
regression techniques, and 
increased the association 
strength between estimated 
and reference data. 

Borrego 
et al 
(2016) 

1. SGX MICS-
OZ-47 (O3) 

2. SGX MICS-
2610 (O3) 

3. Alphasense 
O3B4 (O3) 

4. Alphasense 
NO2B4 (NO2) 

1. Airpointer - 
Recordum UV 
Fluorescence 
Analyser (SO2) 

2. Environnement 
AC31M 
Airpointer - 
Recordum 
Chemiluminesce

NO2: ~ 0–52 
ppb, CO: ~ 
0.04–1.4 
ppm, O3: ~ 
0–45 ppb, 
humidity: 
40–90% RH, 
and 

Field testing 
at an urban 
traffic 
location in 
Aveiro, 
Portugal for 
two weeks. 

Tested several sensors as part 
of different sensor nodes for 
monitoring various air 
pollutants. They found 
significant differences between 
the performances of same 
sensor depending on the 
sensor node type. 



D1.5 Summary of air quality sensors and recommendations for application 
 

- 29 - 

5. Citytech 3E50 
(NO2) 

6. SGX MICS-
2710 (NO2) 

7. Alphasense 
COB4 (CO) 

8. Alphasense 
NOB4 (NO) 

nce Analyser 
(NOx) 

3. Environnement 
CO11M 
Airpointer - 
Recordum 
Infrared 
Photometry 
Analyser (CO) 

4. Environnement 
O341M 
Airpointer - 
Recordum 
Ultraviolet 
photometry 
Analyser (O3) 

temperature: 
12–30 °C. 

Jiao et 
al 
(2016) 

1. Aeroqual 
SM50 (O3) 

2. SGX MICS-
2710 (NO2) 

3. SGX MICS-
5525 (CO) 

FRM/FEM Humidity: 
11−100% 
RH and 
temperature: 
−12 to 33°C. 

Locations in 
and around 
a regulatory 
monitoring 
site in 
Decatur 
area in 
Atlanta, GA  

The sensors displayed low to 
high R2 values, ranging from 
0.02−0.16, 0.05−0.57, and 
0.68−0.94 for CO, NO2, and O3 
sensors, respectively. The 
study also explored the impact 
of humidity, temperature, and 
days of usage on improving the 
predictions by the different 
sensors. 

Popoola 
et al 
(2016) 

1. AlphasenseC
O-AF (CO) 

2. AlphasenseN
O-A1 (NO) 

Chemiluminescenc
e analyser (NO) 

Temperature
: 0−36 °C 
and NO: ~ 
0−190 ppb. 
 

Near a busy 
junction 
linking four 
major 
highways in 
Cambridge, 
UK. 

The NO sensor’s baseline 
response was found to be 
highly dependent on 
temperature, and its 
performance significantly 
improved after applying a 
temperature correction 
algorithm. The CO sensor’s 
baseline response was found to 
be slightly affected by 
temperature. 

Spinelle
a et al 
(2016) 

1. UnitecSens 
3000 (O3) 

2. SGX MICS 
OZ-47 (O3) 

3. SGX MICS 
2610 (O3) 

4. FIS SP-61 
(O3) 

Thermo 
Environment TEI 
49C UV-
photometer (O3). 

O3: 0−110 
ppb, 
humidity: 
40−80% RH, 
and 
temperature: 
12−32 °C. 

Exposure 
chamber in 
laboratory 
with the 
ability to 
generate 
gaseous 
mixtures and 
independent
ly control 
humidity, 
temperature, 

Tested different MOS sensors 
for measuring ozone in an 
exposure chamber. They found 
that the calibration lines were 
non-linear for the tested 
sensors. They also explored the 
performance of the sensors for 
parameters including: (i) 
repeatability and LOD, (ii) drift, 
(iii) temperature and humidity 
effects, (iv) interference by 
gases, and (v) hysteresis effect. 
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and wind 
velocity. 

Sun et 
al 
(2016) 

1. AlphasenseN
O2B4 (NO2) 

2. Alphasense 
COB4 (CO) 

Chamber 
experiments: 
1. Teledyne T500U 

(NO2) 
2. Teledyne T300U 

(CO2) 
Field testing: 
Data from Air 
Quality Monitoring 
Stations. 

Chamber 
experiments: 
NO2: 0−250 
ppb, CO: 0-
6 ppm, O3: 
0-300 ppb, 
humidity: 40-
70% RH, 
and 
temperature: 
15-21°C. 
Roadside 
testing: NO2: 
~ 10–210 
ppb, CO: ~ 
0.2–2.5 
ppm, 
humidity: 
33–89% RH, 
and 
temperature: 
15−22 °C. 

Chamber 
experiments, 
and field 
testing at a 
roadside Air 
Quality 
Monitoring 
Station in 
Central 
Hong Kong. 
These tests 
were 
followed by 
deployment 
along a 
marathon 
route in 
urban Hong 
Kong. 

Found that the tested sensors 
performed very well under 
chamber and field conditions. 
The R2 value was greater than 
0.99 for the NO2, CO, and O3 
sensors in chamber condition.  
The R2 values were 0.90, 0.97, 
and 0.92 for the NO2, CO, and 
PM2.5 sensors, respectively, 
during roadside testing.  The 
response for the CO sensor 
was unaffected by humidity and 
temperature, whereas 
response for the NO2 sensor 
was affected by humidity, but 
not temperature. 

Lewis et 
al 
(2016) 

1. Alphasense 
OX-B421 (O3) 

2. Alphasense 
NO2-B4 
(NO2) 

3. Alphasense 
CO-B4 (CO) 

4. Alphasense 
NO-B4 (NO) 

1. Gas standards 
(NO2, CO, and 
NO) 

2. UV photometric 
Thermo Scientific 
Model 49i 
analyser (O3) 

O3: 0–350 
ppb, NO2: 
0–160 ppb, 
CO: 0–200 
ppb, NO: 1–
160 ppb, 
SO2: 0–40 
ppb, 
humidity: 
15–60% RH, 
and 
temperature: 
20.2±0.7 °C. 

Flow cell in 
laboratory. 

Evaluated different gaseous 
sensors for cross-sensitivities 
to different gases and humidity. 
It was concluded that even 
though the cross-sensitivities 
might be low in absolute terms, 
high concentrations of 
interfering gases can produce a 
false positive/negative sensor 
response. 

Castell 
et al 
(2016) 

1. Alphasense 
OX-B421 
(O3) 

2. Alphasense  
NO2-B42F 
(NO2) 

3. Alphasense 
CO-B4 (CO) 

4. Alphasense 
NO-B4 (NO) 

Chamber testing: 
1. Gas standards 

2. Teledyne API 
300E non-
dispersive 
infrared 
spectroscope 
(CO) 

3. Teledyne API 
200A 
Chemiluminesce
nce Nitrogen 

Chamber 
conditions: 
O3: 0–170 
ppb, NO2: 
0–105 ppb, 
CO: 0–5 
ppm, NO: 0–
385 ppb, 
humidity: 
30% RH, 
and 
temperature: 
20 °C. 

Glass 
chamber in 
laboratory 
and different 
air quality 
monitoring 
stations in 
Norway. 

Tested 24 identical sensor 
platforms (AQMesh), which 
comprised of commercially 
available low-cost sensors for 
monitoring O3, NO2, NO, and 
CO. It was found that the data 
quality obtained from the 
sensors was a serious concern 
due to poor reproducibility and 
stability characteristics of the 
sensors.  
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Oxides Analyser 
(NO2/NO/NOx) 

4. Teledyne API 
400 UV 
photometric 
analyser (O3) 

Field testing: 
Data from the air 
quality monitoring 
stations. 

Filed 
conditions: 
humidity: 
19–98% RH, 
and 
temperature: 
−0.7 to 23.3 
°C. 

Duvall 
et al 
(2016) 

1. CairPol 
CairClip (NO2) 

Teledyne Model 
T200U 
chemiluminescence 
analyser (NO2) 

NO2: 0–45 
ppb, 
temperature: 
20−35 °C 
and 
humidity: 
25−93% RH 

La Porte 
Airport, 
Houston, 
Texas, USA 

The study compared the 
sensors performances with 
reference measurements, and 
also deployed them for 
community applications in 
schools and homes. It was 
noted that the community 
participation in collection of air 
pollution data can be used to 
complement data collected by 
experts. 
  

Spinelle 
et al 
(2017) 

1. Citytech 
NO_3E100 
(NO) 

2. SGX MICS-
4514 (NO2 
and CO) 

3. Figaro TGS-
5042 (CO) 

4. SGX MICS-
4514 (CO) 

1. Thermo 42C 
Chemiluminesce
nce Nitrogen 
Oxides Analyser 
(NO2/NO/NOx) 

2. Horiba APMA 
370 Non-
dispersive 
Infrared Gas-
Filter Correlation 
Spectroscopy 
(CO) 

Field 
conditions: 
NO: 0–150 
ppb, CO: 1–
1.3 ppm, 
humidity: 
14–99% RH, 
and 
Temperature
: −1 to 30 
°C. 
Chamber 
conditions: 
NO: 0–150 
ppb, 
humidity: 
40–80% RH, 
and 
temperature: 
7–37 °C. 

5 months 
duration at a 
semi-rural 
area in Italy 
and 
chamber 
experiments 

Compared the performances of 
several field calibration 
methods for low-cost sensors 
for NO, CO, and CO2, including 
simple and multiple linear 
regressions and artificial neural 
network (ANN). It was found 
that the ANN method performed 
better compared to the linear 
regression techniques, and 
increased the association 
strength between estimated 
and reference data.  

Table 5: Summary of articles focused on performance assessment of low-cost gas sensors for air pollution monitoring 
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3.2.1  CO sensors 
Five different models of CO sensors have been tested by the scientific community. Three of them 

are EC sensors and two are MOS sensors as given in Table 6. The EC CO sensors have been 
tested in both chamber and field conditions. In chamber conditions, the performances of the 

Alphasense CO-B4 and CO-AF was found to be excellent, with the R2 values being greater than 
0.99 (Castell et al, 2016; Mead et al, 2013; Sun et al, 2016). However, the field investigations 

report significant deterioration and variations in sensor performances as given in Table 6. Two 
field studies reported moderate to excellent R2 values (0.53–0.97) for the CO-B4 sensor (Borrego 

et al, 2016; Sun et al, 2016). However, two other field studies have reported significantly lower R2 
values (0.17–0.45) for the CO-B4 and TGS-5042 sensors, when calibrating them with reference 

measurements (Castell et al, 2016; Spinelle et al, 2017). The differences in sensor performances 

could be attributed to the differences in testing conditions and methods. Note that sensor aging is 
also important for EC CO sensors since the sensor calibration curve can change significantly over 

time (Castell et al, 2016; Spinelle et al, 2017). 

The LOD values for the CO-AF and CO-B4 sensors were 3 ppb (Mead et al, 2013) and 18–21 ppb 

(Castell et al, 2016; Sun et al, 2016), respectively. The repeatability and reproducibility 
characteristics of the EC CO sensor also seem reasonable (Table 6). Sun et al (2016) reported 

that the CO-B4 sensor was unaffected by humidity and temperature changes during chamber 
testing. Lewis et al (2016) reported that the CO-B4 sensor’s response will increase by 0.53 ppb 

CO per percentage point increase in humidity, meaning that the maximum variation in output 

would be 53 ppb (when RH changes from 0 to 100%), which is quite low compared to typical 
ambient CO concentrations in the European Union (EU). The CO-AF sensor’s baseline response 

was slightly affected by temperature (Popoola et al, 2016). 

We computed that the cross-sensitivities to NO2, O3, NO, CO2, and SO2 would only change the 

response of the CO-B4 sensor only by −1.7 to 1.8 ppb from the data given by Lewis et al (2016). 
This was estimated by multiplying the gaseous cross-sensitivities with their corresponding ambient 

concentrations. For NO2, O3 and SO2 concentrations, we used the EU specified limits. We used a 
representative value for background urban sites for CO2 (400 ppb) and NO (15 ppb). The other 

investigations given in Table 6 also show that the response from EC CO sensors does not seem 
influenced by gaseous co-pollutants. 

Only two MOS CO sensors were tested by the scientific community. The MICS-5525 CO sensor 

was tested by two investigations, and both reported extremely poor performance by this sensor. 



D1.5 Summary of air quality sensors and recommendations for application 
 

- 33 - 

The R2 value was reported as 0.02–0.16 against reference measurements during field testing by 

Jiao et al (2016). Piedrahita et al (2014) calibrated eight identical MICS-5525 sensors under real-
world conditions by using multiple linear regression and exponential models, which accounted for 

temperature and humidity effects. They reported median RMSE as 0.45 ppm and 3.56 ppm for 
the multiple linear regression and exponential models, respectively. They also reported that the 

sensor’s response was dependent on the temperature and decreased linearly when the 
temperature was increased from 19°C to 40°C during chamber testing. The sensor-to-sensor 

reproducibility ranged from poor to moderate (Piedrahita et al, 2014).  

The MICS-4514 sensor was tested by Spinelle et al (2017) under field conditions. They reported 

good R2 values (0.76–0.78) with respect to reference measurements when the sensor was 

calibrated by using simple and multiple linear regression models. However, the same models 
performed poorly during the 4.5 months validation phase with R2 values being less than 0.1. This 

indicates that the sensor aging is important factor for this sensor, and should be accounted when 
making long-term measurements. 

Model Performance assessment 

Alphasense CO-
B4 (EC sensor) 
 

Comparison with reference measurements 
R2 = 0.53-0.87 versus reference measurements when tested as parts of four 
different sensor nodes (Borrego et al, 2016) 
R2 > 0.99 versus a Teledyne T300U CO2 monitor during chamber testing (Sun et 
al, 2016). 
R2 = 0.97 versus a regulatory grade monitor during testing near a roadside (Sun 
et al, 2016). 
R2 = 0.99 during chamber testing (Castell et al, 2016). 
R2 = 0.22–0.45 versus reference measurements during testing as part of 24 
identical AQMesh platforms at an air quality monitoring station in Norway (Castell 
et al, 2016). 
LOD 
18 ppb (Sun et al, 2016). 
21 ppb (Castell et al, 2016). 
Repeatability 
s = 25 ppb at 1300 ppb CO (Castell et al, 2016). 
Cross sensitivity (in ppb/ppb for all gases)  
0.085 to NO2, −0.053 to O3, 0.00 to NO, 0.00 to CO2, and −0.034 to SO2, estimated 
from Lewis et al (2016). 
No cross-sensitivity to O3, NO2, and NO (Castell et al, 2016). 
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Dependence on humidity/temperature 
Sensor’s response not affected by humidity ranging from 40% to 70% RH (Sun et 
al, 2016). 
Sensor’s response not affected by temperature ranging from 15–21°C (Sun et al, 
2016). 
Response changed by 0.53 ppb of CO per percentage point increase in relative 
humidity, estimated from Lewis et al (2016). 
Long term performance 
Significant change in sensor behaviour during the six months of testing (Castell et 
al, 2016). 

Alphasense CO-
AF (EC sensor) 
 

Comparison with reference measurements 
R2 > 0.99 versus calibration gas standard during chamber testing (Mead et al, 
2013). 
LOD 
3 ppb (Mead et al, 2013). 
Cross-sensitivity 
To NO: +0.24 ± 0.05% of measured CO at typical ambient NO concentration 
(Mead et al, 2013). 
To NO2: +0.20 ± 0.08% of measured CO at typical ambient NO2 concentration 
(Mead et al, 2013). 
Dependence on temperature 
Baseline response slightly affected by temperature ranging from 0–36°C (Popoola 
et al, 2016). 
Reproducibility 
High sensor-to-sensor reproducibility with R2 = 0.86–0.95 (Mead et al, 2013). 

Figaro TGS-
5042 (EC 
sensor) 

Comparison with reference measurements 
R2 = 0.17–0.30 and 0.136–0.151 versus reference during calibration and 
validation phases, respectively, by using simple linear regression (Spinelle et al, 
2017). 
R2 = 0.27–0.30 and 0.022–0.036 versus reference during calibration and 
validation phases, respectively, by using multiple linear regression with RH and T 
as additional predictors (Spinelle et al, 2017). 

MiCS-5525 
(MOS sensor) 

Comparison with reference measurements 
Median RMSE was 0.45 ppm (range 0.38–0.52 ppm) during field testing of eight 
sensors by using a multiple linear regression equation that accounted for 
temperature and humidity effects (Piedrahita et al, 2014). 
Median RMSE was 3.56 ppm (range 2.85–5.33 ppm) during chamber testing of 
eight sensors for CO between 0 and 4.2 ppm by using an exponential based model 
equation that accounted for temperature and humidity effects (Piedrahita et al, 
2014). 
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R2 = 0.02−0.16 versus a FRM/FEM measurements at a regulatory monitoring site 
in suburban Atlanta, Georgia, USA (Jiao et al, 2016). 
Dependence on temperature 
Sensor response decreased linearly with increasing temperature from 19°C to 
40°C at a given CO concentration between 0 and 2.8 ppm during chamber testing 
(Piedrahita et al, 2014). 
Reproducibility 
Average sensor-to-sensor reproducibility with R2 = 0.38–0.60 (Piedrahita et al, 
2014). 

MiCS-4514 
(MOS sensor) 

Comparison with reference measurements 
R2 = 0.78 and 0.066–0.067 versus reference during calibration and validation 
phases, respectively, by using simple linear regression (Spinelle et al, 2017). 
R2 = 0.76–0.77 and 0.035–0.047 versus reference during calibration and 
validation phases, respectively, by using multiple linear regression with RH and T 
as additional predictors (Spinelle et al, 2017). 

Table 6: Performance characteristics of low-cost CO sensors 

3.2.2  O3 Sensors 
3.2.2.1 MOS Sensors 
Table 7 gives a summary of the performance characteristics of the ozone sensors that have been 
tested by various scientific investigations. The studies conducted under real-world conditions have 

generally reported moderate to excellent correlations between these sensors and the reference 
instruments with R2 values typically ranging from 0.77 to 0.94. Only one investigation (Borrego et 

al, 2016) has reported a very low R2 value (R2 = 0.12 for the MICS 2610 MOS sensor), which 
could be possibly due to sensor malfunctioning. Piedrahita et al (2014) conducted a measurement 

campaign at an AQMS in Denver, Colorado, and tested eight identical MOS sensors (model MICS 
2611), and reported that the median RMSE was 6.1 ppb. Two studies have also tested different 

ozone sensors under chamber conditions. In the study by Williams et al (2014c), three different 
MOS based ozone sensors were tested in an exposure chamber under four different conditions 

(normal, hot, humid, and cold). The study generally found strong correlation between the 

responses of these sensors and the reference instrument with R2 ranging from 0.88–0.99. 
However, it should be noted that the MICS-2611 sensor could not complete the tests under hot 

(temperature ≥ 50°C) and humid (RH ≥ 85%) conditions due to its response being unstable under 
those conditions. Four commercial MOS based ozone sensors were also tested by Spinellea et al 

(2016) in an exposure chamber. They reported the residual values for those sensors, as the 
difference between the reference concentration and the sensor measured value. At ozone 
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concentrations ranging from 0 to 110 ppb, the residual values were quite low (between 2.0–4.2 

ppb) for three sensors; however, the residual value was as high as 13.3 ppb for the MICS-2610 
sensors. Interestingly, the same sensor model was found to perform poorly in the investigation by 

Borrego et al (2016), as previously mentioned. Overall, the different MOS based ozone sensors 
(except for the MICS-2610 sensor) generally had good correlations and low residual values when 

compared against the reference methods. 

The repeatability of the MOS ozone sensors has been studied by two investigations under 
chamber conditions (Spinellea et al, 2016; Williams et al, 2014c). The repeatability characteristics 

of the sensors were found to vary from excellent to poor as the standard deviations of their outputs 
ranged from as low as 0.2 ppb to as high as 46.2 ppb for the different sensors under different 

testing conditions. The sensor-to-sensor reproducibility has been quantified by two studies 
(Moltchanov et al, 2015; Piedrahita et al, 2014) through computing the R2 values between the 

responses of several identical sensors under similar conditions. Moltchanov et al (2015) reported 

high reproducibility between sensors with R2 = 0.85–0.98, whereas Piedrahita et al (2014) reported 
variable reproducibility values with R2 ranging from 0.21–0.98 (median = 0.69). 

The LOD of various MOS ozone sensors were calculated by the two chamber investigations 
(Spinellea et al, 2016; Williams et al, 2014c). Spinellea et al (2016) reported very low LOD values 

(0.5–1.5 ppb) for three different sensors; however, the LOD values were found to be much higher 

(5.1–23.4 ppb) for the three sensors tested by Williams et al (2014c). The reason for these 
differences is attributed to the different methods used for computing the LOD values. The study 

by Williams et al (2014c) has also reported the resolution of the three sensors under different 
conditions. The sensor with the best resolution had values between 0.1–3.6 ppb, whereas the 

sensor with the worst resolution had values between 2.6–37.7 ppb under different chamber 
conditions. 

The response times of the different MOS based ozone sensors were reported by only two 

investigations (Spinellea et al, 2016; Williams et al, 2014c). Spinellea et al (2016) reported that 
the t90 for four different sensors varied from 4.4 to 89 minutes. The investigation by Williams et al 

(2014c) reported the tlag and trise time of three different sensors. The tlag and trise were between 1–
3 mins and 5–8 mins, respectively. Thus, the t90 can be roughly calculated to be around 10 minutes 

(by summing the tlag and trise). Once again, we find that the characteristics of different MOS based 
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ozone sensors can be quite different, with their response times, as characterized by t90, ranging 

from just about 5 minutes to as high as 90 minutes. 

Spinellea et al (2016) have reported the cross-sensitivities of four different MOS based ozone 

sensors to CO, CO2, NO, NO2, and NH3 as given in Table 7. We computed the change in response 

for these four MOS sensors to be expected at typical urban settings by multiplying their sensitivity 
values with the corresponding gas concentrations expected in an urban environment (the 

procedure was described while discussing the cross-sensitivities of CO sensors). The estimated 
changes in sensor outputs were very low (−2.40 ppb to 1.95 ppb) for interferences by CO2, NO, 

NO2, and NH3. However, CO interference (at 10 mg/m3 CO concentration) would cause a 
significant change in the MOS sensor outputs (−6.81 ppb to 19.83 ppb), meaning that cross-

sensitivity to CO could be important for such sensors. The cross sensitivity to SO2 for three 
different MOS based ozone sensors were reported to be 0–7.5 ppb of ozone at > 200 ppb of SO2 

concentration by the Williams et al (2014c). Note that SO2 concentration in urban settings is 

typically less than 20 ppb, so its effect on the O3 sensors outputs is expected to be much smaller 
than that reported by Williams et al (2014c) for general air pollution monitoring applications. The 

study by Williams et al (2014c) also reported the cross-sensitivity to NO2 for the Dynamo O3 sensor 
to be 15.6 ppb at >200 ppb of NO2 concentration, meaning that interference by NO2 at high 

concentration could be a concern for this sensor. Based on the two investigations discussed 
above, it seems that cross-sensitivity to gaseous interferences by CO and NO2 could impact the 

responses of MOS ozone sensors, which must be carefully accounted for before using them. 

The response of the MOS based ozone sensors were also found to be significantly impacted by 
the environmental conditions such as temperature and relative humidity. During the chamber 

testing by Spinellea et al (2016), responses of the four different MOS sensors were found to 
decrease by 0.7–3.9 ppb of O3 per °C increase in temperature from 12–32 °C. In these chamber 

tests, humidity was also found to impact the response of the sensors with the change being −3.1 
to 0.84 ppb of ozone per percentage point increase in RH. However, the field testing conducted 

by Jiao et al (2016) did not find any association between the sensor’s response and temperature 
or humidity. It is typically difficult to isolate the impact of secondary influencing factors (arising 

from changes in temperature or humidity) from the primary one (arising from changes in the ozone 

concentrations) in uncontrolled real-world conditions. 
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The drift in output for four different MOS-based sensors has been reported by Spinellea et al 

(2016). The sensors exhibited variable drift values, ranging from −0.009 to 0.081 ppb of O3 per 
day during six months of chamber testing. This translates to −2 ppb to 15 ppb difference in sensor 

output for this duration depending on the model of the sensor. Moltchanov et al (2015) reported 
that the regression coefficients of the calibration curve of Aeroqual SM50 sensor changed with 

time possibly due to sensor aging and dust accumulation in the sensors due to episodic events 
such as rain or dust storms. However, Jiao et al (2016) did not find any association between the 

Aeroqual SM50 sensor’s response and “days of use” during their field campaign suggesting that 
episodic dust accumulation might be the causing the sensor response changes reported by 

Moltchanov et al (2015). Clearly, this effect needs to characterized and compensated for, if long 

term O3 measurements are to be made with these sensors. 

3.2.2.2 EC Sensors 
Three models of EC based ozone sensors have been tested by the scientific community as given 

in Table 7.  Spinelle and co-workers studied the performances of both these sensors under 

chamber and field conditions. During chamber testing, the correlation between the sensor 
response and the reference instrument was found to be excellent with R2 being greater than 0.99 

for both the sensors (Spinelle et al, 2015a). A similar result was obtained by Castell et al (2016) 
for the OX-B421 sensor during chamber tests. However, while calibrating these sensors during 

field deployments, the O3B4 sensor showed a negligible R2 value (R2 = 0.021) with the reference, 
whereas the O3_3E1F sensors showed good R2 values (0.84–0.88) with the reference (Spinelle 

et al, 2015b). Since the R2 value between the O3B4 sensor and the reference was negligible, 
whereas the O3_3E1F sensor showed good R2 values with the reference; it appears that the 

tested O3B4 sensor was faulty. Thus, we don’t discuss additional results for this particular sensor 
obtained by Spinelle et al (2015b). In order to better calibrate the O3_3E1F, they used multiple 

linear regression models by including the concentration of NO2 as an additional predictor, which 

increased the R2 values to 0.85–0.94. The developed linear models (simple and multiple linear 
regression models) were then tested for another 4.5 months of field deployment in the validation 

phase of the study. During model validation, the model performance deteriorated significantly with 
the R2 values being 0.67–0.81 and 0.58–0.82 for the simple and multiple linear regression models, 

respectively, for the O3_3E1F sensor. This clearly indicates that the response curves of the 
sensors were time variable possibly due to sensor aging and/or dust accumulation. Borrego et al 

(2016) reported R2 = 0.13–0.70 during their field tests for the O3B4 sensor, when this sensor was 
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tested as a part of three different platforms under identical conditions. The different sensor 

platforms might use different signal processing techniques for converting the raw sensor response 
to the O3 concentration, which might be reason for these disparities in the reported R2 values. 

Castell et al (2016) tested twenty-four OX-B421 sensors as part of the AQMesh platform, and 
reported R2 = 0.01–0.66 during a collocation campaign at a reference station. Their results clearly 

show that even for identical sensor and platform, drastically different results can be obtained, 
calling for careful quality control in the manufacturing process for both sensors and platforms. 

As given in Table 7, majority of the data on performance characterization for three EC ozone 

sensors was obtained by Spinelle et al (2015a) and Castell et al (2016) under chamber conditions. 
They reported the standard deviations of the sensor outputs between 0.4 ppb to 1.91 ppb at 100 

ppb ozone concentration, which indicates good repeatability characteristics of the sensors. The 
LOD was quite low (2.7–6.8 ppb), and the sensors also exhibited fast response times (t90 = 84–

108 s). 

A few investigations have tested the cross sensitivities of the EC ozone sensors to different gases 
as given in Table 7. From the table, it is clear that NO2 interference is a big problem for the EC 

ozone sensors with the sensor response increasing by 0.76–1.00 ppb of O3 per ppb of NO2. 
Interferences by other gases do not seem to be a significant concern. We estimated that at typical 

urban concentrations of CO, CO2, NO, NH3, and SO2 the sensor response would change by −3.8 

to 0.05 ppb of O3, (the estimation procedure is discussed in the section on CO sensors). However, 
NO2 interference causes a significant increase in sensor outputs (16–21 ppb of O3). 

Humidity and temperature were found to affect outputs of EC O3 sensors with the responses of 

different sensors changing by −0.022 to 1.3 ppb O3 per percentage point increase in relative 
humidity and by 0.0 to 1.3 ppb O3 per 1°C increase in temperature under laboratory testing (Lewis 

et al, 2016; Spinelle et al, 2015a). However, Spinelle et al (2015b) did not find any influence of 
humidity or temperature on the response of EC sensors during their field campaign. The 

differences between field and chamber measurements is attributed to the inability of field 
measurements in isolating the effect of a particular factor (such as temperature) on the sensor’s 

response from other confounding factors (eg. gaseous interferences and sensor aging). 

The drift of the sensor output was reported to be 0.016 and 0.142 ppb/day for the two sensors 
during the six months evaluation period. This translates to a total drift of 3 ppb and 26 ppb for the 
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O3B4 and O3_3E1F sensors, respectively, for the six months duration, meaning that the temporal 

variations in sensor response needs to be properly accounted for before conducting long term 
measurements. This is also supported from the observations of Castell et al (2016), who reported 

significant changes in an OX-B421 sensor’s behaviour during six months of testing. 

As evident from the above discussion, there is very limited amount of scientific literature available 
on the EC ozone sensors, which makes it extremely difficult to comprehensively assess their 

performance. Further studies are required to address this issue. 

Model Performance assessment 

Aeroqual SM50 
(MOS sensor) 

Comparison with reference measurements 
R2 = 0.77–0.94 versus an air quality monitoring station monitor in Haifa, Israel 
(Moltchanov et al, 2015). 
R2 = 0.82–0.94 versus a FRM/FEM measurements at a regulatory monitoring site 
in suburban Atlanta, Georgia, USA (Jiao et al, 2016). 
Reproducibility 
High sensor-to-sensor reproducibility with R2 = 0.85–0.98 (Moltchanov et al, 
2015). 
Dependence on humidity/temperature 
No improvement in R2adj when humidity or temperature were added as a predictor 
variable  (Jiao et al, 2016). 
Drift/Stability 
The slope and intercept values in the linear calibration curve changed significantly 
over time (Moltchanov et al, 2015). 
No improvement in R2adj when “days of use” was added as a predictor variable  
(Jiao et al, 2016). 

UnitecSens 3000 
(MOS sensor) 

Comparison with reference measurements 
Maximum residual value equal to 2.0 ppb versus a UV-photometer during 
chamber tests (Spinellea et al, 2016). 
Repeatability 
s = 3.3 ppb at 100 ppb ozone (Spinellea et al, 2016). 
LOD 
1.3 ppb (Spinellea et al, 2016). 
Response time 
t90 = 52±36 min(Spinellea et al, 2016). 
Cross sensitivity (in ppb/ppm for CO2 and ppb/ppb for other gases) 
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0.015 to NO2, −0.061 to NO,  2.3×10−3 to CO,  −0.076 to CO2, and  −1.1×10−3 to 
NH3 (Spinellea et al, 2016). 
Dependence on humidity/temperature 
Response changed by −0.65 ppb per percentage point increase in relative 
humidity from 40–80% RH (Spinellea et al, 2016). 
Response changed by −3.86 ppb per °C increase in temperature from 12–32 °C 
(Spinellea et al, 2016). 
Drift 
0.070±0.060 ppb/day during six months of chamber testing (Spinellea et al, 2016). 

SGX MICS OZ-
47 (MOS sensor) 

Comparison with reference measurements 
R2 = 0.77 versus reference (Borrego et al, 2016) 
Maximum residual value equal to 3.1 ppb versus a UV-photometer during 
chamber tests (Spinellea et al, 2016). 
Repeatability 
s = 2.0 ppb at 100 ppb ozone (Spinellea et al, 2016). 
LOD 
1.5 ppb (Spinellea et al, 2016). 
Response time 
t90 = 9.8±7.8 min (Spinellea et al, 2016). 
Cross sensitivity (in ppb/ppm for CO2 and ppb/ppb for other gases)  
0.014 to NO2, −1.9×10−3 to NO, −7.9×10−4 to CO, 2.2×10−3 to CO2, and 8.0×10−4 
to NH3 (Spinellea et al, 2016). 
Dependence on humidity/temperature 
Response changed by −0.02 ppb per percentage point increase in relative 
humidity from 40–80% RH (Spinellea et al, 2016). 
Response changed by −0.7 ppb per °C increase in temperature from 12–32°C 
(Spinellea et al, 2016). 
Drift 
0.081±0.010 ppb/day during six months of chamber testing (Spinellea et al, 2016). 

SGX MICS-2610 
(MOS sensor) 

Comparison with reference measurements 
R2 = 0.12 versus reference (Borrego et al, 2016) 
Maximum residual value equal to 13.3 ppb versus a UV-photometer during 
chamber tests (Spinellea et al, 2016). 
Repeatability 
s = 0.2 ppb at 100 ppb ozone (Spinellea et al, 2016). 
LOD 
0.5 ppb (Spinellea et al, 2016). 
Response time 
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t90 = 4.4±8.1 min (Spinellea et al, 2016). 
Cross sensitivity (in ppb/ppm for CO2 and ppb/ppb for other gases)  
0.081 to NO2, −0.016 to NO,  −3.5×10−4 to CO,  1.9×10−3 to CO2, and −1.0×10−3 
to NH3 (Spinellea et al, 2016). 
Dependence on humidity/temperature 
Response changed by 0.84 ppb per percentage point increase in relative humidity 
from 40-80% RH (Spinellea et al, 2016). 
Response changed by −3.1 ppb per °C increase in temperature from 12-32°C 
(Spinellea et al, 2016). 
Drift 
−0.009±0.016 ppb/day during six months of chamber testing (Spinellea et al, 
2016). 

SGX MICS-2611 
(MOS sensor) 

Comparison with reference measurements 
Median RMSE was 6.1 ppb (range 4.2–15.4 ppb) during field testing of eight 
sensors by using a multiple linear regression equation that accounted for 
temperature and humidity (Piedrahita et al, 2014). 
R2 = 0.88–0.95 versus reference during chamber testing in two different conditions 
(Williams et al, 2014c) 
Repeatability 
s = 6.5–46.2 ppb during chamber testing in two different conditions (Williams et 
al, 2014c). 
Reproducibility 

Variable sensor-to-sensor reproducibility with R2 = 0.21–0.98 (Piedrahita et al, 
2014). 
LOD 
LOD = 5.1–11.7 ppb during chamber testing under different conditions (Williams 
et al, 2014c). 
Resolution 
Resolution = 0.1–3.6 ppb during chamber testing in four different conditions 
(Williams et al, 2014c). 
Response time 
tlag = 1–3 min during chamber testing in two different conditions (Williams et al, 
2014c). 
trise = 5–8 min during chamber testing in two different conditions (Williams et al, 
2014c). 
Cross-sensitivity 
The sensor showed a response equivalent to 0 ppb O3 at > 200 ppb of SO2 
(Williams et al, 2014c). 

FIS SP-61 (MOS 
sensor) 

Comparison with reference measurements 
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Maximum residual value equal to 4.2 ppb versus a UV-photometer during 
chamber tests (Spinellea et al, 2016). 
Repeatability  
s = 19.8 ppb at 100 ppb ozone (Spinellea et al, 2016). 
Response time 
t90 = 89±111 min(Spinellea et al, 2016). 
Cross sensitivity (in ppb/ppm for CO2 and ppb/ppb for other gases)  
0.024 to NO2, 0.13 to NO, 9.9×10−4 to CO, −1.2×10−2 to CO2, and 3.0×10−2 to NH3 
(Spinellea et al, 2016). 
Dependence on humidity/temperature 
Response changed by −0.46 ppb of O3 per percentage point increase in relative 
humidity from 40-80% RH (Spinellea et al, 2016). 
Response changed by −2.3 ppb of O3 per °C increase in temperature from 12-
32°C (Spinellea et al, 2016). 
Drift 
−0.007±0.180 ppb/day during six months of chamber testing (Spinellea et al, 
2016). 

AGT 
Environmental 
Sensor (MOS 
sensor) 

Comparison with reference measurements 
R2 > 0.98 versus reference during chamber testing in four different conditions 
(Williams et al, 2014c). 
Repeatability 
s = 2.6–13.6 ppb during chamber testing in four different conditions (Williams et 
al, 2014c). 
LOD 
LOD = 14.7–23.4 ppb during chamber testing in four different conditions (Williams 
et al, 2014c). 
Resolution 
Resolution = 2.6–37.7 ppb during chamber testing in eight different conditions 
(Williams et al, 2014c). 
Response time 
tlag = 1 min during chamber testing in four different conditions (Williams et al, 
2014c). 
trise = 3–6 min during chamber testing in four different conditions (Williams et al, 
2014c). 
Interference 
The sensor showed a response equivalent to 7.5 ppb O3 at > 200 ppb of SO2 
(Williams et al, 2014c). 

Dynamo Sensor 
(MOS sensor) 

Comparison with reference measurements 
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R2 > 0.97 versus reference during chamber testing in four different conditions 
(Williams et al, 2014c). 
Repeatability 
s = 3.3–7.0 ppb during chamber testing in four different conditions (Williams et al, 
2014c). 
LOD 
LOD = 14.9–17.6 ppb during chamber testing in four different conditions (Williams 
et al, 2014c). 
Resolution 
Resolution = 2.0–11.7 ppb during chamber testing in eight different conditions 
(Williams et al, 2014c). 
Response time 
tlag = 1 min during chamber testing in four different conditions (Williams et al, 
2014c). 
trise = 2–5 min during chamber testing in four different conditions (Williams et al, 
2014c). 
Interference 
The sensor showed a response equivalent to 2.9 ppb and 15.6 ppb of O3 at > 200 
ppb of SO2 and > 200 ppb of NO2, respectively (Williams et al, 2014c). 

Alphasense 
O3B4 (EC 
sensor) 
 

Comparison with reference measurements 
R2 = 0.021 versus reference measurements during calibration by using simple 
linear regression (Spinelle et al, 2015b) 
R2 > 0.99 during chamber testing (Spinelle et al, 2015a). 
R2 = 0.13–0.70 versus reference when tested as parts of three different sensor 
platforms (Borrego et al, 2016). 
Repeatability 
s = 0.4 ppb at 100 ppb O3 (Spinelle et al, 2015a). 
LOD 
6.8 ppb (Spinelle et al, 2015a). 
Response time 
t90 = 84 s (Spinelle et al, 2015a). 
Cross sensitivity (in ppb/ppm for CO and CO2 and ppb/ppb for other gases)  
0.92 to NO2, −0.042 to NO, −0.066 to CO, 2×10−4 to CO2, and 2.5×10−4 to NH3 
(Spinelle et al, 2015a). 
Dependence on humidity/temperature 
Response changed by 0.40 ppb of O3 per percentage point increase in relative 
humidity from 40-80% RH (Spinelle et al, 2015a). 
Not affected by increase in temperature from 12–32°C (Spinelle et al, 2015a). 
Drift 



D1.5 Summary of air quality sensors and recommendations for application 
 

- 45 - 

< 0.016 ppb/day during six months of chamber testing (Spinelle et al, 2015a). 

Citytech 
O3_3E1F (EC 
sensor) 
 

Comparison with reference measurements 
R2 > 0.99 versus reference measurements during chamber testing (Spinelle et al, 
2015a). 
R2 = 0.84–0.88 and 0.67–0.81 versus reference during calibration and validation 
phases, respectively, by using simple linear regression (Spinelle et al, 2015b) 
R2 = 0.85–0.94 and 0.58–0.82 versus reference during calibration and validation 
phases, respectively, by using multiple linear regression with NO2 concentration 
as an additional predictor (Spinelle et al, 2015b). 
Repeatability 
s = 0.6 ppb at 100 ppb O3 (Spinelle et al, 2015a). 
LOD 
2.7 ppb (Spinelle et al, 2015a). 
Response time 
t90 = 108 s (Spinelle et al, 2015a). 
Cross sensitivity (in ppb/ppm for CO and CO2 and ppb/ppb for other gases)  
0.76 to NO2, −0.011 to NO, 7.0×10−5 to CO, 3.5×10−3 to CO2, and 1.6×10−3 to NH3 
(Spinelle et al, 2015a). 
Dependence on humidity/temperature 
Response changed by −0.022 ppb of O3 per percentage point increase in relative 
humidity from 40–80% RH (Spinelle et al, 2015a). 
Response changed by 1.3 ppb of O3 per °C increase in temperature from 12–32°C 
(Spinelle et al, 2015a). 
Not affected by humidity (Spinelle et al, 2015b) 
Not affected by temperature (Spinelle et al, 2015b) 
Drift 
< 0.142 ppb/day during six months of chamber testing (Spinelle et al, 2015a). 

Alphasense OX-
B421 (EC 
sensor) 
 

Comparison with reference measurements 
R2 = 0.99 versus reference measurements during chamber testing (Castell et al, 
2016). 
R2 = 0.01–0.66 versus reference measurements during testing as part of 24 
identical AQMesh platforms at an air quality monitoring station in Norway (Castell 
et al, 2016). 
Repeatability 
s = 1.91 ppb at 100 ppb O3 (Castell et al, 2016). 
LOD 
1.8 (Castell et al, 2016). 
Cross sensitivity (in ppb/ppm for CO and CO2 and ppb/ppb for other gases)  



D1.5 Summary of air quality sensors and recommendations for application 
 

- 46 - 

1.00 to NO2, −0.251 to NO, 0.00 to CO, 2.2×10−1 to CO2, and −0.034 to SO2, 
estimated from Lewis et al (2016). 
No cross-sensitivity to NO and CO (Castell et al, 2016). 
Dependence on humidity/temperature 
Response changed by 1.3 ppb of O3 per percentage point increase in relative 
humidity, estimated from Lewis et al (2016). 
Stability 
Significant change in sensor behaviour during the six months of testing (Castell et 
al, 2016). 

Table 7: Performance characteristics of low-cost O3 sensors 

3.2.3  NO2 Sensors 
3.2.3.1 MOS sensors 
Three different models of MOS NO2 sensors have been tested by various scientific investigations 
as given in Table 8. During chamber testing of two different MOS NO2 sensors (AGT 

Environmental and MICS-2710) under four different conditions, Williams et al (2014c) reported 
excellent correlations (R2 > 0.98) between the sensor responses and the reference 

instrumentation. However, it should be noted that only the AGT Environmental sensor could 
complete the tests under all four conditions, whereas the MICS-2710 sensor could not complete 

the tests under “normal” and “cold” conditions due to problems with its stability. MOS NO2 sensors 
have also been deployed in a few field investigations. Spinelle et al (2015b) have reported poor 

R2 values (R2 ≈ 0.2) between the responses of two different MOS NO2 sensors (MICS-2710 and 

MICS-4514) and the reference measurements during the two weeks calibration period. To better 
model the sensor responses, they also used multiple linear regression with the concentrations of 

O3 and NO and temperature as additional predictors, which improved the R2 values to 0.52–0.79 
during the calibration phase for both sensors. The researchers further tested the models by using 

them for future measurements during the 4.5 months validation period. They found that the 
performances of both the simple and multiple linear regression models were very poor during the 

validation period with reported values of R2 being ~0.1, which points to the aging of the sensors. 
Thus, sensor aging needs to be properly understood and compensated for, before long-duration 

measurements can be made; otherwise, frequent sensor calibration would be required. Borrego 
et al (2016) and Jiao et al (2016) tested the MICS-2710 sensor under field conditions, and reported 

R2 less than 0.1 between the sensor response and the reference measurements. Another field 

investigation by Piedrahita et al (2014) tested six MICS-2710 sensors, and found the 
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measurement errors to be acceptable. They reported the median RMSE value equal to 8.4 ppb 

by using a multiple linear regression model that accounted for temperature and humidity effects 
on the sensor’s response. 

From the discussion above, it seems that a simple linear relationship between the responses of 

the MOS NO2 sensors and the reference measurements is achieved only under laboratory 
conditions, but not under field conditions. This is because, there reportedly are various factors 

such as gaseous interference, humidity, and temperate, which influence the sensor’s output, and 
need to be included while modelling the response of the sensor. Furthermore, sensor aging also 

seems to be an important characteristic of such sensors that changes the response of the sensor 
with time. Therefore, in order to conduct field measurements of NO2 with MOS sensors, the 

sensors need to be properly and frequently calibrated by accounting for the different factors that 
can influence their response. 

The repeatability characteristics of two different MOS NO2 sensors under chamber conditions has 

been found to be reasonable by one investigation (Williams et al, 2014c) with the standard 
deviations of their repeated measurements lying between 1.2–7.5 ppb under different conditions. 

The sensor-to-sensor reproducibility for the  MICS-2710 sensors was found to be high under field 
conditions (Piedrahita et al, 2014) as given in Table 8. Based on these limited studies, it seems 

that the repeatability and reproducibility characteristics of MOS NO2 sensors are reasonably good. 

The performance metrics of LOD, resolution, response time, and cross-sensitivity have only been 
reported by only one chamber investigation for two MOS NO2 sensors under different conditions 

(Williams et al, 2014b). The LOD values varied between 6.3–26.6 ppb, and the resolution was 

between 0.1–6.8 ppb for the two sensors under different test conditions. The tlag value for both the 
sensors was 1 minute. However, the trise differed significantly between the two sensors, varying 

from 21–33 minutes for the MICS-2710 sensor and from 5–20 minutes for the AGT Environmental 
sensor. Thus, we can crudely approximate t90 (as the sum of tlag and trise) to vary between 6–34 

minutes. The cross-sensitivity to SO2 was reported to be 0 ppb and 19.5 ppb of NO2 at >200 ppb 
SO2 concentration for the MICS-2710 and the AGT Environmental sensor, respectively. Thus, it 

seems that depending on the specific test conditions and the model of the sensor; the LOD, 
resolution, response times, and cross-sensitivities can be significantly different. 
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3.2.3.2 EC sensors 
Table 8 summarizes the performance characteristics of the EC NO2 sensors tested by scientific 

investigations. The sensor responses show excellent correlation with the reference measurements 
with R2 > 0.9 being reported by a few investigations under chamber conditions for four different 

sensors (Table 8). Expectedly, the correlation between the sensor response and the reference 
gets deteriorated under real world conditions. Borrego et al (2016) reported R2 values between 

0.06–0.89 for the NO2-B4 sensor, when tested as part of four different sensor platforms during 
field testing. This was possibly due to different signal processing algorithms used by the different 

platforms. They also reported R2 = 0.89 for another EC NO2 sensor. Mead et al (2013) and Sun 
et al (2016) conducted roadside measurements of NO2 with an EC sensor, and reported R2 values 

of ~0.9 after applying correction algorithms for interference by O3 and humidity, respectively. 

Castell et al (2016) tested twenty-four EC NO2 sensors (used in the AQMesh platform), and 
reported variable R2 values (0.04–0.52) during their field campaign, which once again emphasises 

the requirement for quality control in the manufacturing of the sensor and platform. Another field 
campaign by Spinelle et al (2015b) tested the performance of three different NO2 EC sensors. 

They reported R2 values between 0.001–0.46 for the different sensors tested during the two weeks 
calibration period. To obtain better agreement between the sensor responses and the reference 

measurements, they employed a multiple linear regression model by using O3 concentration, 
temperature, and humidity as additional predictors. This led to R2 values ranging from 0.35–0.77, 

which was a significant improvement over the R2 values previously obtained by the simple linear 
regression model. They also found that the agreement between the measurements from EC 

sensors and the reference was very poor (R2 < 0.1 for all the sensors) during the validation phase 

of their campaign due to sensor aging. Clearly, the field campaigns point out that the EC NO2 
sensor responses are affected by O3 concentration, temperature, relative humidity, aging, and 

manufacturing variations, which should be accounted for, while calibrating and using these 
sensors. 

The repeatability characteristics of EC NO2 sensors have been reported by only a few chamber 

investigations. The standard deviations for repeated measurements were between 0.8–2.9 ppb at 
100 ppb NO2 concentration for three different sensors (Castell et al, 2016; Spinelle et al, 2015a), 

whereas Williams et al (2014c) reported the standard deviation to be 4.6 and 23.3 ppb for a sensor 
tested under two different conditions. The values reported by Williams et al (2014c) are much 

higher than those reported by the other two investigations probably due to differences in sensor 
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models and testing methodologies. The sensor-to-sensor reproducibility was reported to be 

excellent (R2 > 0.94) by Mead et al (2013). Thus, the EC NO2 sensors’ repeatability and 
reproducibility characteristics seem acceptable; however, more research is required to confirm 

this. 

A few investigations have reported the LOD value for the EC NO2 sensors. Spinelle et al (2015a) 
reported the LOD values for three different sensors, Mead et al (2013), Castell et al (2016), and 

Sun et al (2016) reported LOD values for one sensor each, and Williams et al (2014b) reported 
the LOD values for one sensor under two different chamber conditions. The reported values are 

0.5–8.6 ppb, 1 ppb, 2.8 ppb, 6 ppb , and 11.6–29.4 ppb according to Spinelle et al (2015a), Mead 
et al (2013), Castell et al (2016), Sun et al (2016), and Williams et al (2014b), respectively. The 

values reported by Williams et al (2014c) are much higher than those reported by other 
investigations since they used a different methodology to compute the LOD values as compared 

to that used by the other studies. Only one investigation (Williams et al, 2014c) has reported the 

resolution value for one EC NO2 sensor, which lies between 3.7–10.0 ppb under four different 
conditions. 

The sensor response times have been reported by two different investigations. Spinelle et al 
(2015a) reported the t90 values for three different sensors as 1.3 min, 1.6 min, and 38.4 min. The 

abnormally high response time was reported for the CairPol CairClip sensor possibly due to the 

presence of an ozone filter and/or a humidity buffer in that sensor. The Williams et al (2014c) 
reported the tlag < 1 min and trise = 8 min and 18 min for one sensor under two different conditions. 

EC NO2 sensors are also impacted by interfering gases and environmental conditions. As was 

discussed previously, EC NO2 sensors need to be calibrated such that the dependence of their 
response on the O3 concentration, temperature, and humidity are taken in account. Mead et al 

(2013) reported about 100% interference by O3 on the measurements conducted by NO2-A1 
sensor, which effectively means that the sensor is measuring the sum concentration of NO2 and 

O3. Additionally, they reported that interference by NO and CO at ambient conditions is quite low, 
which is also supported by data from Castell et al (2016) as given in Table 8. The cross-

sensitivities to a total of six gases was reported by Spinelle et al (2015a) and Lewis et al (2016) 
for different EC NO2 sensors. Spinelle et al (2015a) reported extremely high cross sensitivity to O3 

(1.5 ppb of NO2 output per ppb of O3 concentration) for two of the sensors. The other NO2 sensor 
tested by them was found to have extremely low cross-sensitivity to O3 since it contained an O3 
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filter at its inlet. Oddly, Lewis et al (2016) reported no cross-sensitivity to O3 for the sensor tested 

by them; however, it was likely due to the presence of an O3 filter. From this cross-sensitivity data, 
we calculated that the interference by CO, CO2, NO, NH3, and SO2 would cause an estimated 

uncertainty of −3.3 to 1.3 ppb NO2 at typical urban ambient concentrations of interfering gases 
(the estimation procedure was described while discussing the cross-sensitivities of O3 sensors). 

The interference to SO2 was reported by Williams et al (2014c) for one EC NO2 sensor to be 34.2 
ppb of NO2 for >200 ppb of SO2. However, typically such high SO2 concentration would not be 

encountered in an urban setting, meaning that the influence of SO2 on the sensor response would 
be much lower. 

The effects of temperature and humidity on EC NO2 sensor outputs have been reported by a few 

chamber investigations. Spinelle et al (2015a) found that the sensor response increased by 0.093–
0.47 ppb of NO2 per °C increase in temperature from 12–32 °C for three different EC sensors as 

given in Table 8. However, Sun et al (2016) did not detect any influence of temperature (15–21°C) 

on the NO2-B4 sensor’s response. Their temperature range is only 6°C, and we can estimate an 
increase in the sensor output by only 2.8 ppb (based on 0.47 ppb NO2 per °C, reported by Spinelle 

et al (2015a)), which was probably left undetected by Sun et al (2016). The impact of humidity on 
EC sensor outputs was reported to be between −0.057 to 0.13 ppb of NO2 per percentage point 

increase in relative humidity (from 40–80% RH) for three different sensors by Spinelle et al 
(2015a). Sun et al (2016), also found that humidity ranging from 40–70% RH increased the sensor 

output for the NO2-B4 sensor; however, Lewis et al (2016) did not observe any influence of 
humidity for the same sensor model. Overall, we find conflicting results regarding the effects of 

humidity and temperature on the response of low-cost NO2 sensors, which might be arising due 
to differences in sensor models and/or manufacturing variations between same sensor types. 

The sensor drift was found to be between −0.497 to −0.065 ppb/day for the three different EC NO2 

sensors during six months of chamber testing (Spinelle et al, 2015a). This would cause a decrease 
in the reported NO2 concentration by 12–89 ppb during a six month monitoring campaign. Castell 

et al (2016) also found that the NO2-B4 sensor’s behaviour changed significantly during their six 
months long testing. Clearly, this effect needs to be considered when conducting long-term 

campaigns with EC NO2 sensors. 

Model Performance assessment 
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MICS-2710 
(MOS sensor) 

Comparison with reference measurements 
Median RMSE was 8.4 ppb (range 6.9–9.5 ppb) during field testing of six sensors 
for NO2 concentrations between ~0−70 ppb by using a multiple linear regression 
equation that accounted for temperature and humidity effects (Piedrahita et al, 
2014). 
R2 > 0.98 versus reference during chamber testing in two different conditions 
(Williams et al, 2014c). 
R2 = 0.200–0.206 and 0.126–0.131 versus reference during calibration and 
validation phases, respectively, by using simple linear regression (Spinelle et al, 
2015b) 
R2 = 0.744–0.745 and 0.057–0.063 versus reference during calibration and 
validation phases, respectively, by using multiple linear regression with O3 
concentration and temperature as additional predictors (Spinelle et al, 2015b). 
R2 = 0.02 versus reference (Borrego et al, 2016) 
R2 = 0.05–0.06 versus a FRM/FEM measurements at a regulatory monitoring site 
in suburban Atlanta, Georgia, USA (Jiao et al, 2016). 
Repeatability 
s = 2.6 ppb and 5.0 ppb during chamber testing in two different conditions 
(Williams et al, 2014c). 
Reproducibility 
High sensor-to-sensor reproducibility with R2 = 0.88–0.98 (Piedrahita et al, 2014). 
LOD 
LOD = 6.3–10.4 ppb during chamber testing in two different conditions (Williams 
et al, 2014c). 
Resolution 

Resolution = 0.1–4.1 ppb during chamber testing in four different conditions 
(Williams et al, 2014c). 
Response time 
tlag = 1 min during chamber testing in two different conditions (Williams et al, 
2014c). 
trise = 21 and 33 min during chamber testing in two different conditions (Williams 
et al, 2014c). 
Cross-sensitivity 
The sensor showed a response equivalent to 0 ppb NO2 at > 200 ppb of SO2 
(Williams et al, 2014c). 

MICS-4514 
(MOS sensor) 

Comparison with reference measurements 
R2 = 0.168–0.269 and 0.016–0.203 versus reference during calibration and 
validation phases, respectively, by using simple linear regression (Spinelle et al, 
2015b). 
R2 = 0.525–0.786 and 0.010–0.016 versus reference during calibration and 
validation phases, respectively, by using multiple linear regression with 



D1.5 Summary of air quality sensors and recommendations for application 
 

- 52 - 

temperature and concentrations of O3 and NO as additional predictors (Spinelle 
et al, 2015b). 

AGT 
Environmental 
Sensor (MOS 
sensor) 

Comparison with reference measurements 
R2 > 0.99 versus reference during chamber testing in four different conditions 
(Williams et al, 2014c). 
Repeatability 
s = 1.2–7.5 ppb during chamber testing in four different conditions (Williams et al, 
2014c). 
LOD 
LOD = 15.3–26.6 ppb during chamber testing in four different conditions (Williams 
et al, 2014c). 
Resolution 
Resolution = 0.8–6.8 ppb during chamber testing in eight different conditions 
(Williams et al, 2014c). 
Response time 
tlag = 1 min during chamber testing in four different conditions (Williams et al, 
2014c). 
trise = 5–20 min during chamber testing in four different conditions (Williams et al, 
2014c). 
Cross-sensitivity 
The sensor showed a response equivalent to 19.5 ppb NO2 at > 200 ppb of SO2 
(Williams et al, 2014c). 

Alphasense 
NO2-A1 (EC 
sensor) 

Comparison with reference measurements 
R2 > 0.99 versus calibration gas standard during chamber testing (Mead et al, 
2013). 
R2 = 0.89–0.92 versus TEM 42D NO-NO2-NOx analyser during testing above a 
busy urban road after accounting for cross sensitivity to O3 (Mead et al, 2013). 
R2 > 0.97 versus reference during chamber testing in two different conditions 
(Williams et al, 2014c). 
Repeatability 
s = 4.6 ppb and 23.3 ppb during chamber testing in two different conditions 
(Williams et al, 2014c). 
Reproducibility 
High sensor-to-sensor reproducibility with R2 = 0.94–0.95 (Mead et al, 2013). 
LOD 
1 ppb (Mead et al, 2013). 
11.6–29.4 ppb during chamber testing in two different conditions (Williams et al, 
2014c). 
Resolution 
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Resolution = 3.7–10.0 ppb during chamber testing in four different conditions 
(Williams et al, 2014c). 
Cross-sensitivity 
To O3: ~100% of measured NO2 at typical ambient O3 concentrations (Mead et al, 
2013). 
To CO: −0.02 ± 0.03% of measured NO2 at typical ambient CO concentration 
(Mead et al, 2013). 
To NO: +1.2 ± 0.11% of measured NO2 at typical ambient NO concentration (Mead 
et al, 2013). 
The sensor showed a response equivalent to 34.2 ppb NO2 at >200 ppb of SO2 
(Williams et al, 2014c). 
Response time 
tlag< 1 min during chamber testing in two different conditions (Williams et al, 
2014c). 
trise = 8 min and 18 min during chamber testing in two different conditions (Williams 
et al, 2014c). 

CairPolCairClip 
NO2 ANA (EC 
sensor) 
 

Comparison with reference measurements 
R2 > 0.99 during chamber testing (Spinelle et al, 2015a). 
R2 = 0.24–0.46 and 0.004–0.04 versus reference during calibration and validation 
phases, respectively, by using simple linear regression (Spinelle et al, 2015b) 
R2 = 0.58–0.74 and 0.004–0.02 versus reference during calibration and validation 
phases, respectively, by using multiple linear regression with O3 concentration as 
an additional predictor (Spinelle et al, 2015b). 
Repeatability 
s = 1.7 ppb at 100 ppb NO2 (Spinelle et al, 2015a). 
LOD 
0.9 ppb (Spinelle et al, 2015a). 
Response time 
t90 = 38.4 min (Spinelle et al, 2015a). 
Cross sensitivity (in ppb/ppm for CO and CO2 and ppb/ppb for other gases)  
−0.010 to O3, −0.007 to NO, −0.001 to CO, 0.009 to CO2, and −0.032 to NH3  
(Spinelle et al, 2015a). 
Dependence on humidity/temperature 
Response changed by −0.057 ppb of NO2 per percentage point increase in relative 
humidity from 40-80% RH (Spinelle et al, 2015a). 
Response changed by 0.093 ppb of NO2 per °C increase in temperature from 12–
32°C (Spinelle et al, 2015a). 
Drift 
< −0.065 ppb/day during six months of chamber testing (Spinelle et al, 2015a). 
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Alphasense 
NO2-B4 (EC 
sensor) 

Comparison with reference measurements 
R2 > 0.99 during chamber testing (Spinelle et al, 2015a). 
R2 = 0.11–0.23 and 0.002–0.009  versus reference during calibration and 
validation phases, respectively, by using simple linear regression (Spinelle et al, 
2015b) 
R2 = 0.35–0.68 and 0.026–0.086 versus reference during calibration and 
validation phases, respectively, by using multiple linear regression with O3 
concentration, temperature, and RH as additional predictors (Spinelle et al, 
2015b). 
R2 = 0.06–0.89 versus reference measurements when tested as parts of four 
different sensor platforms (Borrego et al, 2016) 
R2 > 0.99 versus Teledyne T500U NO2 monitor during chamber testing (Sun et al, 
2016). 
R2 = 0.90 versus a regulatory grade monitor after applying a humidity correction 
algorithm during testing near a roadside (Sun et al, 2016). 
R2 = 0.96–0.99 versus reference measurements during chamber testing (Castell 
et al, 2016). 
R2 = 0.04–0.27 versus reference measurements during testing as part of 24 
identical AQMesh platforms at an air quality monitoring station in Norway (Castell 
et al, 2016). 
Repeatability 
s = 2.9 ppb at 100 ppb NO2 (Spinelle et al, 2015a). 
s = 2.8 ppb at 100 ppb NO2 (Castell et al, 2016). 
LOD 
8.6 ppb (Spinelle et al, 2015a). 

6 ppb (Sun et al, 2016). 
2.7 (Castell et al, 2016). 
Response time 
t90 = 1.3 min (Spinelle et al, 2015a). 
Cross sensitivity (in ppb/ppm for CO and CO2 and ppb/ppb for other gases)  
1.5 to O3, −0.032 to NO, <−1.3×10−3 to CO, −0.042 to CO2, and −0.089 to NH3 
(Spinelle et al, 2015a). 
0.00 to O3, −0.054 to NO, 0.00 to CO, 1.5×10−1 to CO2, and 0.027 to SO2, 
estimated from Lewis et al (2016). 
No cross-sensitivity to O3 (due to presence of an ozone filter), NO, and CO (Castell 
et al, 2016). 
Dependence on humidity/temperature 
Response changed by 0.13 ppb of NO2 per percentage point increase in relative 
humidity from 40-80% RH (Spinelle et al, 2015a). 
Response changed by 0.47 ppb of NO2 per °C increase in temperature from 12-
32°C (Spinelle et al, 2015a). 
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Sensor’s response increased as the humidity was increased from 40% to 70% RH 
(Sun et al, 2016). 
Sensor’s response not affected by temperature ranging from 15–21°C (Sun et al, 
2016). 
Response changed by 0.00 ppb of NO2 per % point RH increase in humidity, 
estimated from Lewis et al (2016). 
Sensor stability 
<−0.497 ppb/day during six months of chamber testing (Spinelle et al, 2015a). 
Significant change in sensor behaviour during the six months of testing (Castell et 
al, 2016). 

Citytech 
NO2_3E50 (EC 
sensor) 

Comparison with reference measurements 
R2 > 0.99 during chamber testing (Spinelle et al, 2015a). 
R2 = 0.001–0.002 and 0.051–0.068 versus reference during calibration and 
validation phases, respectively, by using simple linear regression (Spinelle et al, 
2015b) 
R2 = 0.56–0.77 and 0.062–0.078 versus reference during calibration and 
validation phases, respectively, by using multiple linear regression with O3 
concentration, temperature, and RH as additional predictors (Spinelle et al, 
2015b). 
R2 = 0.89 versus reference (Borrego et al, 2016) 
Repeatability 
s = 0.8 ppb at 100 ppb NO2 (Spinelle et al, 2015a). 

LOD 
0.5 ppb (Spinelle et al, 2015a). 
Response time 
t90 = 1.6 min (Spinelle et al, 2015a). 
Cross sensitivity (in ppb/ppm for CO and CO2 and ppb/ppb for other gases)  
1.5 to O3, −0.058 to NO, −1.6×10-3 to CO, −0.013 to CO2, and −0.11 to NH3 
(Spinelle et al, 2015a). 
Dependence on humidity/temperature 
Response changed by 0.062 ppb of NO2 per percentage point increase in relative 
humidity from 40-80% RH (Spinelle et al, 2015a). 
Response changed by 0.16 ppb of NO2 per °C increase in temperature from 12-
32°C (Spinelle et al, 2015a). 
Drift  
<−0.196 ppb/day during six months of chamber testing (Spinelle et al, 2015a). 

Table 8: Performance characteristics of low-cost NO2 sensors. 
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3.2.4  NO Sensors 
Three EC NO sensors have been tested by scientific investigations as given in  

Table 9. Mead et al (2013) reported good R2 coefficients (R2 > 0.99) with the reference 
measurements during chamber testing of the NO-A1 sensor. They also reported good R2 values 

(R2 = 0.80–0.95) during measurements of roadside NO concentration, when the sensors were 
located indoors and exposed to very minimal temperature variations. However, when they placed 

the sensors outside, the baseline response of the sensors was found to be affected by the ambient 
temperature with a strong exponential dependence. Similar sensor characteristics were also 

reported by (Popoola et al, 2016), who observed a strong exponential relationship (R2 = 0.9) 
between the sensor’s baseline response and temperature. Once the sensor’s baseline response 

was corrected for temperature effects, it led to significant improvement in R2 (from 0.02 to 0.71–

0.78) against reference measurements (Popoola et al, 2016). Thus, it seems crucial to account 
for the impact of temperature on the NO-A1 sensor before making measurements.  

For the Alphasense NO-B4 sensors, Borrego et al (2016) has reported the R2 values as 0.34 and 
0.80, when it was tested as part of two different platforms. The reason for this discrepancy could 

be the difference in signal processing algorithms used for processing the raw sensor output by the 
two platforms. Once again, this suggests the need for properly calibrating the sensors by 

accounting for the different factors that might influence their response before using them. Castell 
et al (2016) reported R2 = 0.99 during chamber testing for the NO-B4 sensors. However, they 

reported variable R2 values (R2 = 0.36–0.96 as given in Table 9) during field testing, probably 

arising due to manufacturing variations in the sensors and/or sensor platforms. 

Spinelle et al (2017) reported the R2 values for the Citytech NO_3E100 sensor under laboratory 

and field conditions. The laboratory performance was excellent (R2 > 0.99); however, the 
performance under real-world conditions was extremely poor with no association found between 

the sensor response and the reference measurements. One possible reason could be a faulty 
sensor; however, further investigations are required to investigate the NO_3E100 sensor’s 

performance under field conditions. 

Good repeatability and reproducibility was observed for the NO-A1 and NO-B4 sensors, 

respectively (Table 9). The LOD values reported are 2.4 and 4 ppb for the NO-A1 and NO-B4 
sensors, respectively, and 74.9 ppb for the NO_3E100 sensor (see Table 9). Once again it seems 

that the NO_3E100 sensor was faulty given its unreasonably high LOD. 
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The cross-sensitivities for the NO-A1 sensor to CO and NO2 are quite small with its response 

increasing by about 0.10–0.45% of NO at typical ambient concentrations of the interfering gases 
(Mead et al, 2013). Similarly, Castell et al (2016) reported no effect of cross-sensitivities to O3, 

NO2, and CO on NO-B4 sensor’s output. The cross-sensitivities reported by Spinelle et al (2017) 
and Lewis et al (2016) for the two different EC NO sensors are given in  

Table 9. We computed the impact of those cross-sensitivities on the sensor outputs by multiplying 
the cross-sensitivity values with the corresponding concentrations of interfering gases. For NO2, 

O3, CO and SO2 concentrations, we used the EU specified limits. We used a representative value 
for background urban sites for CO2 (400 ppb) and NH3 (30 ppb). For the NO-B4 sensor, the 

estimated change is response was negligible (−0.6 to 0.6 ppb of NO) due to interferences by O3, 

CO, CO2, and SO2; however, NO2 interference would cause a large decrease (22.1 ppb of NO) in 
the measured concentration of NO. This seems contradictory to the conclusions obtained by 

Castell et al (2016) for the cross-sensitivity of the NO-B4 sensor to NO2. However, it should be 
noted that the sensors tested by Castell et al (2016) were part of the AQMesh platform, which 

uses proprietary algorithms to compensate for cross-sensitivity effects. For the NO_3E100 
sensors, it was found that the sensor response would change by −11.4 ppb, −5.0 ppb, 0.0 ppb, 

4.8 ppb, and 19.0 ppb due to interferences by NH3, O3, CO2, NO2, and CO, respectively. Thus, 
depending on the sensor model, the gaseous interferences should be considered while making 

NO measurements. 

The strong influence of temperature on the NO-A1 sensor was discussed previously. Similarly, 

Spinelle et al (2017) reported a significant dependence of the NO_3E100 sensor’s response on 

the temperature (the response changed by −1.05 ppb of NO per °C increase in temperature). 
However, they also found that the dependence on humidity for this sensor was very small as given 

in Table 9. Furthermore, Popoola et al (2016) reported that there was no significant change in the 
sensitivity of this sensor for a period of one year. For the NO-B4 sensor, we estimated that its 

response would be strongly influenced by the relative humidity by using the data reported by Lewis 
et al (2016). Thus, the discrepancy between the reported influences of relative humidity the NO-

A1 and NO-B4 sensors’ responses needs further investigation. 

Model Performance assessment 

AlphasenseNO-
A1 (EC sensor) 

Comparison with reference measurements 
R2 > 0.99 versus calibration gas standard during chamber testing (Mead et al, 
2013). 
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R2= 0.80–0.95 versus a chemiluminescence analyser during testing above a busy 
urban road with the sensor placed indoors (Mead et al, 2013). 
R2 improved from 0.02 to 0.71–0.78 versus a chemiluminescence analyser after 
correcting for sensor’s baseline dependence on temperature (Popoola et al, 
2016). 
LOD 
4 ppb (Mead et al, 2013). 
 
Cross-sensitivity 
To CO: +0.10 ± 0.08% of measured NO at typical ambient CO concentration 
(Mead et al, 2013). 
To NO2: +0.45 ± 0.2% of measured NO at typical ambient NO2 concentration 
(Mead et al, 2013). 
Reproducibility 
High sensor-to-sensor reproducibility with R2 = 0.84–0.97 (Mead et al, 2013). 
Dependence on temperature 
Baseline response showed a strong exponential dependence (R2 = 0.9) on 
temperature ranging from 0–36°C (Popoola et al, 2016). 
Long term performance 
No statistically significant change in temporal sensitivity for a one year period 
(Popoola et al, 2016). 

AlphasenseNO-
B4 (EC sensor) 

Comparison with reference measurements 
R2 = 0.34 and 0.80 versus reference measurements when tested as parts of two 
different sensor nodes (Borrego et al, 2016). 
R2 = 0.99 versus reference measurements during chamber testing (Castell et al, 
2016). 
R2 = 0.36–0.96 versus reference measurements during testing as part of 24 
identical AQMesh platforms at an air quality monitoring station in Norway (Castell 
et al, 2016). 
LOD 
2.4 (Castell et al, 2016). 
Repeatability 
s = 1.5 ppb at 100 ppb NO (Castell et al, 2016). 
Cross sensitivity (in ppb/ppb for all gases) 
−1.057 to NO2, −0.020 to O3, 0.00 to CO, 3.2×10-5 to CO2, and 0.013 to SO2, 
estimated from Lewis et al (2016). 
No cross-sensitivity to O3, NO2, and CO (Castell et al, 2016). 
Dependence on humidity 
Response changed by −0.543 ppb of NO per percentage point increase in relative 
humidity, estimated from Lewis et al (2016). 
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Table 9: Performance characteristics of low-cost NO sensors 

4 Beyond the State of the Art 
To successfully achieve the aims of a low-cost sensor-based air pollution monitoring system, it is 
crucial to involve citizens through a ‘crowd sourced’ effort as defined by Thompson (2016). Such 

an effort would typically comprise of a pollutant sensor interfaced wirelessly with a smartphone 
providing pollution data to the user and a central server. By involving citizens as enablers and 

users of the sensing system, several goals can be readily achieved, which include developing 
local pollutant maps, assessing individual exposures, and increasing citizens’ awareness about 

air pollution. However, challenges with respect to maintaining user engagement and sensor 

performance need to be addressed before such crowd-sourced campaigns can be widely adopted. 

Another challenge faced in deploying sensors at a large scale is related to quality control of the 

data. While many scientific studies have utilized low-cost PM and gaseous sensors in a variety of 

Long term performance 
Significant change in sensor behaviour during the six months of testing (Castell et 
al, 2016). 

Citytech 
NO_3E100 (EC 
sensor) 

Comparison with reference measurements 
R2 = 2.3×10−5–5.7×10−3 and 0.001–0.018 versus reference during calibration and 
validation phases, respectively, by using simple linear regression (Spinelle et al, 
2017). 
R2 = 1.8×10−3–7.5×10−2 and 0.009–0.020 versus reference during calibration and 
validation phases, respectively, by using multiple linear regression with RH and T 
as additional predictors (Spinelle et al, 2017). 
R2 > 0.99 versus reference during chamber testing at 22°C and 60% RH (Spinelle 
et al, 2017). 
LOD 
74.9 ppb (Spinelle et al, 2017). 
Dependence on temperature 
Response changed by −1.05 ppb of NO per °C increase in temperature from 7–
37°C (Spinelle et al, 2017). 
Dependence on humidity 
Response changed by 0.041 ppb of NO per percentage point increase in RH from 
40-80% (Spinelle et al, 2017). 
Cross sensitivity (in ppb/ppm for CO and CO2 and ppb/ppb for other gases)  
−0.16 to O3, 0.23 to NO2, 2.2 to CO, 2.6×10−3 to CO2, and −0.38 to NH3 (Spinelle 
et al, 2017). 
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air pollution monitoring activities, only a few have reported sensor performance characteristics 

and the associated data quality. To further exacerbate the matter, performance assessments have 
been done by using different experimental setups, reference equipment, and environmental 

conditions, making it infeasible to compare them with each other and draw generalized 
conclusions regarding the data quality. Thus, in order to deploy a large-scale sensor network and 

meaningfully use the plethora of data generated, it is imperative to formulate standard guidelines 
for assessing the short and long term performance of low-cost sensors, which can be used by one 

and all. 

Improper sensor calibration seems to be a major issue plaguing the data quality. The sensor 
response is largely impacted by environmental conditions, particle characteristics (for PM 

sensors), and gaseous cross-sensitivities (for gas sensors). Thus, calibration methods that don’t 
include these factors are bound to produce erroneous data. The sensor manufacturer (or user) 

should first generate a calibration equation by using laboratory testing, and identify the major 

factors that affect the sensor’s response. The calibration curve can then be improved by the user 
through testing the sensor under actual conditions of deployment. Advanced calibration 

techniques such as neural networks could also be considered since they might be more effective 
than regression modelling.(De Vito et al, 2008; De Vito et al, 2009; De Vito et al, 2015; Esposito 

et al, 2016; Spinelle et al, 2015b; 2017) 

5 Recommendations for the Work Package 
5.1 PM Sensors 
Various low-cost PM sensors are available in the market (Table 1) that measure the concentration 

of particles based on the amount of light scattered by them when illuminated by a light source. 
This method is suitable only for measuring particles larger than ~0.3 µm in diameter since smaller 

particles don’t scatter enough light. To use this technique for measuring PM2.5 or PM10, it should 

be ensured that the sensor is equipped with an impactor or filter at the air inlet that provides the 
appropriate cut-off diameter (2.5 µm and 10 µm for measuring PM2.5 and PM10, respectively). This 

feature is not provided in any of the sensors given in Table 2, expect for the Sharp DN7C3CA006 
sensor that is equipped with a 2.5 µm virtual impactor. A few sensors such as the Dylos utilize 

signal processing algorithms to categorize particles between PM2.5 and PM10; however, such 
algorithms may lead to significant misclassification (Sousan et al, 2016b).Thus, to measure 
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concentrations of PM2.5 or PM10, any of the sensors given in Table 2 can be used in principle by 

combining the sensor with an appropriate size-selection mechanism, if not already provided by 
the manufacturer. 

There exist several investigations that have already used these sensors for a variety of air pollution 

monitoring applications. However, there are very few studies that have assessed the performance 
of these sensors, which makes it difficult to make generalized recommendations about selecting 

or not selecting a particular sensor. Our survey of scientific literature found that only three sensors 
(Sharp GP2Y1010AU0F, Shinyei PPD42NS, and Dylos) have been tested by five or more studies. 

The performance characteristics of these three sensors are roughly similar as shown in Table 4. 
The sensors generally demonstrate good comparison with reference measurements and 

reasonable precision. However, their outputs are highly dependent on the particle composition 
and size and relative humidity, meaning that they should be carefully calibrated before using them. 

Thus, from a performance perspective, any of these three sensors can be used for monitoring PM 

as part of this project. 

However, it is important to note that the GP2Y1010AU0F and PPD42NS sensors are available as 

stand-alone sensors, and need to be integrated into a data acquisition and storage system; 
whereas the Dylos has its own data acquisition, storage, and display system. This is also one of 

the reasons for the much higher cost of Dylos as compared to the other two sensors. For this 

project, since we already have an in-house data acquisition and storage system, the higher cost 
of Dylos is not justified. Thus, the GP2Y1010AU0F and PPD42NS sensors are suitable from a 

cost perspective. 

Overall, the Sharp DN7C3CA006 sensor seems to be a good choice for measuring PM2.5 
concentration since it comes equipped with a 2.5 µm virtual impactor, and also has a low cost. For 

measuring PM10, we recommend using either the Sharp GP2Y1010AU0F or the Shinyei PPD42NS 
sensor since both have reasonable performance characteristics combined with a low cost. Note 

that the raw output of these PM sensors would roughly correspond to PM10 concentration since 
particles greater than 10 µm are difficult to draw in the sensing zone, meaning there should not 

be a need for any impactor/filter at the inlet. 
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5.2 Gas sensors 
Two types of low-cost sensors are available for measuring various gases; MOS sensors and EC 

sensors. We discussed the broad characteristics of each sensor types in section 3.2. One 
important distinguishing factor between them is the cost, which are about ten dollars for the MOS 

sensors and about hundred dollars for the EC sensors. Thus, clearly from a cost perspective MOS 
sensors are much more suitable for this project than EC sensors. However, the performance 

characterization also needs to be accounted before making recommendation for a particular 
sensing technology for measuring a particular gas. This assessment is given in the following 

subsections. 

5.2.1  CO sensors 
As discussed in Section 3.2.1, a very limited number of investigations have tested the performance 
of the different EC and MOS CO sensors. A few discrepancies between these studies were found 

related to the performance characterization of different sensors, which could be attributed to the 

different sensor designs and/or the different test conditions and methods used by the different 
investigators. Thus, in order to access the performance traits of these CO sensors for air pollution 

monitoring application, further investigations are required. Nevertheless, for this project, we 
recommend the MOS CO sensors because on their low-cost as compared to the EC sensors. 

5.2.2  O3 sensors 
The different MOS sensors had reasonably good performance under both chamber and real-world 

conditions with the R2 correlation coefficients typically ranging from 0.77–0.94, except for the 
MICS-2610 sensor which reportedly had a low correlation coefficient and high residual values. 

The EC sensors reportedly had excellent R2 (R2 > 0.99) correlation coefficients with reference 
measurements when tested under chamber conditions; however, under field conditions, they 

reportedly had variable R2 values ranging from 0.021–0.94. Unfortunately, there are not enough 
studies in the literature that have tested the EC O3 sensors, meaning that their performance 

assessment cannot be judged properly at this stage. Thus, it is recommended to use MOS sensors 
over EC sensors for O3 since they seem to offer reasonably good performance at a very cheap 

price. It is not feasible to make recommendation about any particular MOS O3 sensor due to the 

lack of data about performance assessment; however, Table 7 and Section 3.2.2.1 should be 
carefully consulted before purchasing and deploying a MOS O3 sensor. 
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5.2.3  NO2 sensors 
The performance characteristics of three MOS and four EC NO2 sensors were reported in Section 

3.2.3. Once again, the laboratory performance of these sensors is excellent with the R2 correlation 
coefficients with reference measurements being typically greater than 0.9. However, under field 

conditions, both sensor types have significantly deteriorated performances (R2 < 0.2 typically). In 
order to use either of these sensor types, it is necessary to account for the impact of O3, NO, 

temperature, humidity, and aging as noted by several investigation that reported reasonable R2 
values (R2 = 0.4–0.9) with respect to reference measurements. The interference by O3 is mainly 

problematic and needs to be accounted for either by using an O3 filter at the inlet or through a 
correction algorithm. The other performance metrics as given in Table 8 don’t seem to suggest 

any significant advantage in using the EC NO2 sensors over the MOS sensors, meaning that the 

higher cost of the former is probably unjustified for this project. 

Out of the three MOS NO2 sensors given in Table 8, the AGT Environmental sensor has only been 

tested in chamber conditions. For the MICS-2710 sensor, some real-world investigations have 

tested its performance, but their results are conflicting. This discrepancy is likely caused due to 
the sensor’s output being affected by interfering gases and environmental conditions, which were 

probably not accounted by studies that have reported poor performance by this sensor. Thus, this 
sensor might provide reasonable measurements of NO2, provided it is calibrated carefully and 

frequently, to account for factors that affect its response as discussed previously. However, the 
sensor model has been discontinued, and the upgraded version is the MICS-2714. For the MICS-

2714 sensor, performance assessment has been done by only one study as reported in Table 8 
under the name MICS-4514, which is actually a combined version of a MICS-2714 NO2 sensor 

and a MICS-5524 CO sensor. We don’t have any reason to believe that the performance of the 
new MICS-2714 will be significantly worse than the MICS-2710 sensor. Thus, the MICS-2714 

sensor is recommended for this project. 

5.2.4  NO sensors 
Only a limited number of investigations have tested the performances of different EC NO sensors 
as discussed in Section 3.2.4. We could not perform assessment of MOS NO sensors in our 

literature review; however, the development of such sensors is underway (Fine et al, 2010). Based 

on the very limited data available, it appears that the Aphasense NO sensors might be suitable for 
NO monitoring. 
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5.3 Calibration Procedure for iSCAPE Sensors 
Two sensors solutions, Low-cost citizen sensors and High-end living lab sensors have been 

developed for iSCAPE project. Low-Cost Sensor, is aimed at providing a low-cost environmental 
sensor solution non-technical users can easily deploy. The design developed for the project is a 

complete reiteration of the Smart Citizen Kit, a piece of hardware for citizen sensing already tested 
in other projects for more than five years. High-End Sensors, is aimed at providing the Living Labs 

with a system for monitoring the performance of their interventions. The Station aims at providing 
a solution that can be used by the Living Labs not just from a scientific point of view but also as a 

tool to engage local communities on air pollution related issues. Further detailed information is 
avalible on iSCAPE website. https://docs.iscape.smartcitizen.me/. Based on literature, we have 

developed detailed calibration procedure and documented as separate deliverable: D3.13 

Comprehensive release High-end and low-cost sensing platforms. Comprehensive calibration 
protocol is documented on 

https://docs.iscape.smartcitizen.me/Sensor%20Analysis%20Framework/. A brief overview of 
calibration is provided in the following sections.  

5.3.1 Principles 
The sensor calibration procedure for the iSCAPE sensor solution can be split into three 

stages: (1) Behaviour assessment: Base testing for assessing general sensor response, 
stabilisation time or operational modes. Pulse mode operation is also explored in this stage for 

energy saving purposes. (2)Characterisation: Assess generic sensor parameters sensitivity, zero 
and span. (3) Modelisation: Include other variables such as environmental factors and sensor 

cross-sensitivity. Each of these stages apply differently depending on the type of sensor, for 
instance the electrochemical sensors present in the Station are already characterised by the 

manufacturer, while the Metal Oxide Sensors in the Urban Board of the Citizen Kit are not. The 

different characteristics of these sensors make different calibration approaches to be carried out. 
An initial behaviour assessment is to be carried out in laboratory conditions in order to determine 

the optimal operational modes. This includes basic parameters such as sensor response, heating 
time and temperature as well as more advanced ones such as heating pulse mode operation. For 

this purpose, a portable, open source, reproducible test cell has been developed for controlled 
testing with a web based acquisition interface. Secondly, base calibration parameters need to be 

determined in controlled conditions. In this stage, the aim would be to find parameters such as: 
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- Sensor sensitivity: the sensor response per each ppm of target pollutant in nominal 
conditions 

-  Zero: the sensor reading in zero air (pure air at 25ºC) 
- Sensor response (t90) 
- Sensor range: maximum and minimum readings for the sensor 

 
Finally, after this initial calibration assessment, it is critical to gather as much data as possible from 
long term sensor deployments. These deployments should aim to cover the widest range of sensor 

exposure conditions, in order to generate robust models. While dealing with low cost sensors this 
stage is very important, as it is detailed in the sections below. These sensor deployments serve 

for two main purposes: to generate quantitative classification methods that can classify the air 

quality in predefined ranges (i.e. 'poor', 'fair', good'); and to generate predictive qualitative models 
for more accurate values. Either of them need large amounts of data if the models are aimed to 

be representative. Additionally, by the mere nature of the data and the sensors themselves, these 
models would need to be capable of: Robust to noise, learn non-linear relationships, multivariate 

inputs and learned temporal dependence. These needs make machine learning methods great 
candidates for modelling the data. Traditionally, time series forecasting has been dominated by 

linear methods because they are well understood and effective on many simpler forecasting 
problems. However, deep learning neural networks are able to automatically learn arbitrary 

complex mappings from inputs to outputs and support multiple inputs and outputs. Therefore, 
deep learning methods such as MLPs and LSTMs offer a lot of promise for the type of problem 

presented in the iSCAPE project. The combination of these algorithms with large amounts of data 

gathered during the iSCAPE project offers a great opportunity to demonstrate the use of low cost 
sensors for air quality monitoring.  

These deployments should at least guarantee the following needs: (i)A checked reference 

measurement for the sensors to be compared against it, (ii)sufficient sensor stabilisation time and 
varied operational conditions, and (iii)careful monitoring of the sensor correct operation: 

connectivity and power supply, among others. 

5.3.2 Metal Oxide Sensors 
Due to their construction, low cost metal oxide sensors suffer from high levels of spread for 

their baseline resistance and sensitivity. As well, these sensors are generally reactive to other 

pollutants in the atmosphere, with low selectivity of the actual target pollutant and drifts in their 
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behaviour can be seen after some weeks of exposure. Therefore, metal oxide sensors require a 

careful characterisation and medialisation in both, laboratory and open air conditions. 
Furthermore, metal oxide sensors show short and long term drifts in their calibrations. For this 

reason, a recursive calibration approach is proposed. This procedure would comprise: 

 

1. Sensor characterisation in laboratory conditions to assess sensitivity, baseline 
resistances sensor-to-sensor spread, aiming to obtain normalising factors for each 

sensor or group of sensors 

2. Sensor collocation with reference equipment for model development, accounting for 
the laboratory factors obtained in the previous stage and in order to include more 

complex environmental factors 

3. Sensor deployment stage with independent measurement 

4. Sensor re-assessment by either laboratory characterisation or collocation with 
reference equipment. This could serve for correction for the model parameters used 

during the deployment and to assess the sensor reliability and need for replacement 

Further to the sensor re-assessment, other deployments could be explored should there not be 
sensor breakdown. 

5.3.3 Electrochemical Sensors  
The electrochemical sensor manufacturer keeps a database of the sensor sensitivities and 

zero currents (baseline response) of each individual sensor. Therefore, the calibration approach 
for the electrochemical sensors is reduced to an in-field validation of their behaviour and a model 

proposal that is described in the electrochemical sensor baseline methodology. Surely, further 
models developed after long term data collection with field deployments are to be considered in 

order to improve sensor readings. 
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5.3.4 PM Sensors 
The selected PM sensor is as well, characterised by the manufacturer and it provides an 

accurate measurement with its calibration. As with the above mentioned electrochemical sensors, 
a long term field deployment with reference equipment is to considered in order to develop more 

complex models including environmental features such as humidity, which has been 
demonstrated to have an influence on PM readings. 

6 Conclusions 
This report presents a review of the state-of-the-art of low-cost sensors/sensing-technologies for 

measuring particulate and gaseous air pollutants based on up-to-date scientific literature with a 
focus on providing guidance to end users for sensor selection. Based on this review, following 

conclusions can be drawn: 

• To measure PM2.5 and PM10, several low-cost optical sensors are available in the market. 
The low-cost sensors tend to perform reasonably well as compared to conventionally used 
particle monitors of significantly higher cost.  However, the sensors need to carefully 

calibrated under specific test conditions (i.e., the iSCAPE city sites) before usage since 

changes in environmental conditions and particle characteristics can drastically change 
their response. 

• To measure gaseous air pollutants such as O3, NO2, CO, and NO; two types of low-cost 
sensors are generally available in the market: (i) MOS based sensors and (ii) EC based 

sensors. The performance characteristics of these gaseous sensors were variable with 
some investigations reporting good agreement with reference measurements and some 

reporting otherwise. This discrepancy was attributed to the differences in the signal 
processing algorithms and test conditions/methods used in different studies. Nevertheless, 

it is clear that these sensors need careful and frequent calibration such that the various 
factors that influence their response are accounted/controlled before usage.  

• It was found that the EC sensors are typically more expensive than MOS sensors, but the 
EC sensors are claimed to have better performance characteristics. However, we did not 

find enough evidence of significant performance benefits in using EC sensors over MOS 
sensors to justify their higher costs. Thus, MOS based sensors were recommended for 
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monitoring O3, NO2, and CO. An EC based sensor was recommended for monitoring NO 

since MOS NO sensors are not currently available in the market. 
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