

​This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 689954.

Ref. Ares(2020)2670054 - 22/05/2020

D3.1 Data Management Plan v4.3

Project Acronym and
Name

iSCAPE - Improving the Smart Control of Air Pollution in
Europe

Grant Agreement
Number

689954

Document Type Report

Document version &
WP No.

V.5.0 (rev2) WP3

Document Title High-end and low-cost sensing platforms

Main authors Guillem Camprodon, Óscar González, Víctor Barberán

Partner in charge IAAC

Contributing partners -

Release date 2020

The publication reflects the author’s views. The European Commission is not liable
for any use that may be made of the information contained therein.

Document Control Page

Short
Description

one paragraph summary of the report

Review status Action Person Date

Quality Check Coordination Team 08/10/2019

Internal
Review

Santa Stibe (UCD) 15/11/2019

Francesco Pilla (UCD) 15/11/2019

Distribution Public

1

D3.1 Data Management Plan v4.3

Revision history

Version Date Modified by Comments

v1.0 12/2017 Guillem Camprodon First internal version

V2.0 01/2018 Guillem Camprodon Second internal version

V3.0 02/2018 Guillem Camprodon First public release

V4.1
10/2018

Guillem Camprodon,
Santa Stibe, Óscar
González

Report refactoring after EU review feedback

V4.2

02/2019

Guillem Camprodon,
Óscar González
Santa Stibe and
Francesco Pilla

Preliminary review

V4.3 11/2019 Santa Stibe and
Francesco Pilla

Final internal review

V4.3.1 11/2019 Guillem Camprodon,
Óscar González

Final public version

V5.0
2020

Guillem Camprodon,
Óscar González,
Víctor Barberán

Consolidated offline version of the project
online documentation

2

D3.1 Data Management Plan v4.3

Executive Summary
The following reports consolidates the iSCAPE Sensors Documentation, priorly only
available online , into a single document. The purpose of which is to document all 1

the software and hardware sensor platform developed as part of WP3: Passive
Control Solutions. It aims at providing guidelines in the use of the tools to both
consortium members and external participants in the different Living Labs. The
report covers three main aspects, the hardware, including the Citizen Kit and the
Living Lab Station, the Smart Citizen platform software, and the Sensor Analysis
Framework.

For more information on the results of the sensor evaluation, the algorithms and
models developed as part of these activities and the exploitation of the technology
both commercially and in further research projects we recommend reading D7.8
Sensor monitoring experiences and technological innovations.

1 ​https://docs.smartcitizen.me/​ for archival purposes a copy is also available in Zenodo
https://doi.org/10.5281/zenodo.3828989

3

https://docs.smartcitizen.me/
https://doi.org/10.5281/zenodo.3828989

iSCAPE Sensor Platforms
Documentation

Smart Citizen sensor platform documentation for the iSCAPE project

test

ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

guillem

Table of contents

31. Introduction

52. Sensor Analysis Framework

93. A modular tool for citizen action

104. Sensor Platform

135. Smart Citizen Kit

236. Smart Citizen Station

347. Troubleshooting

388. Use cases

409. Frequently asked questions

4510. Components

15211. Sensors

20312. Guides

30713. Sensor Analysis Framework

31114. Sensor Platform

Table of contents

- 2/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

1. Introduction

1.1 Sections
Main: Contains the Smart Citizen Kit and Smart Citizen Station documentation to help you use them.

Platform: Contains all the documentation on the online platform where data is collected, stored and visualised.

Data Analysis: Contains all the documentation on the data post-processing framework to obtain insights from the data
calibrated by the sensors.

Use cases: Contains documentation and use cases examples how to use our tools with your local community.

Guides: Contains step-by-step guides for different features of the kit, how to get started, use the shell, or make some
more advanced analysis of the sensor readings!

1.2 Guides
The documentation contains multiple guides as step-by-step tutorials to perform essential tasks as installing a kit or
upgrading it's firmware as well.

•

•

•

•

•

1.Introduction

- 3/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

1.3 Open Source
Licensing

The entire project is released under open source licenses:

Hardware components: CERN Open Hardware License v1.2

Core firmware: GNU GPL v3.0

Software platform: GNU AGLP v3.0

Installing the Smart Citizen Kit

Installing the Smart Citizen Station

Installing the Smart Citizen Kit 1.0 / 1.1

Onboarding new Sensors

Uploading SD Card Data

Update the Firmware

Edit the Firmware

Use Machine Learning to Create Models for Sensors Calibration

Example guides

•

•

•

•

•

•

•

•

•

•

•

Check the Source files section for each component and explore the software source code and the hardware blueprints.

Info

1.3Open Source

- 4/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://www.ohwr.org/licenses/cern-ohl/license_versions/v1.2
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/agpl-3.0.en.html

2. Sensor Analysis Framework

������ ��

When dealing with sensor data, specially with low cost sensors, a great part of the effort needs to be dedicated to data
analysis. After a careful data collection, this stage of our experiments is fundamental to extract meaningful conclusions
and prepare reports from them. For this reason, we have developed a data analysis framework that we call the Sensor
Analysis Framework. In this section, we will detail how this framework is built, how to install it, and make most use of it.

2.1 We care for open science
The framework is writen in Python, and can be run using Jupyter Notebooks or Jupyter Lab. It is intended to provide an
state-of-the art data analysis environment, adapted for the uses within the Smart Citizen Project, but that can be easily
expanded for other use cases. The ultimate purpose of the framework, is to allow for reproducible research by providing a
set of tools that can are replicable, and expandable among researchers and users alike, contributing to FAIR data principles.

By SangyaPundir - Own work, CC BY-SA 4.0

The framework integrates with the Smart Citizen API and helps with the analysis of large amounts of data in an efficient
way. It also integrates functionality to generate reports in html or pdf format, and to publish datasets and documents to
Zenodo.

Check the source code

2.2 How we use it
The main purpose of the framework is to make our lives easier when dealing with various sources of data. Let's see different
use cases:

R users won't be left stranded. R2PY provides functionality to send data from python to R quite easily.

More familiar with R?

2.Sensor Analysis Framework

- 5/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://zenodo.org/badge/latestdoi/97752018
https://zenodo.org/badge/latestdoi/97752018
http://www.python.org
http://jupyter.org/
https://github.com/jupyterlab/jupyterlab
https://www.nature.com/articles/sdata201618
https://commons.wikimedia.org/wiki/File:FAIR_data_principles.jpg#/media/File:FAIR_data_principles.jpg
https://commons.wikimedia.org/wiki/File:FAIR_data_principles.jpg#/media/File:FAIR_data_principles.jpg
/commons.wikimedia.org/w/index.php?title=User:SangyaPundir&action=edit&redlink=1
https://creativecommons.org/licenses/by-sa/4.0
SensorPlatform/Smart%20Citizen%20API
https://zenodo.org
https://www.r-project.org/
https://rpy2.bitbucket.io/
https://github.com/fablabbcn/smartcitizen-iscape-data

Get sensor data and visualise it

This is probably the most common use case: exploring data in a visual way. The framework allows downloading data from
the Smart Citizen API or other sources, as well as to load local csv files. Then, different data explorations options are
readily available, and not limited to them due to the great visualisation tools in python. Finally, you can generate html, or pdf
reports for sharing the results.

Organise your data in tests

Handling a lot of different sensors can be at times difficult to organise and have traceability. For this, we created the
concept of test, which groups a set of devices, potentially from various sources. This is convenient since metadata can be
addeed to the test instance describing, for instance, what was done, the calibration data for the device, necessary
preprocessing for the data, etc. This test can be later loaded in a separate analysis session, modified or expanded, keeping
all the data findable.

Some example metadata that can be stored would be:

Test Location, date and author

Kit type and reference

Sensor calibration data or reference

Availability of reference equipment measurement and type

A brief schema of the test structure is specified below:

Check the example on how to load data from the API, and to make plots from it. Check here for an example about reports and it's result.

examples

•

•

•

•

2.2How we use it

- 6/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://pyviz.org/high-level/index.html
https://github.com/fablabbcn/smartcitizen-iscape-data/blob/master/examples/load_device_API.ipynb
https://github.com/fablabbcn/smartcitizen-iscape-data/blob/master/examples/load_test_data.ipynb
https://github.com/fablabbcn/smartcitizen-iscape-data/blob/master/notebooks/report.ipynb
https://github.com/fablabbcn/smartcitizen-iscape-data/blob/master/data/reports/EXAMPLE_REPORT.html

Clean sensor data

Sensor data never comes clean and tidy in the real world. For this reason, data can be cleaned with simple, and not that
simple algorithms for later processing. Several functions are already implemented (filtering with convolution, Kalman filters,
anomaly detection, ...), and more can be implemented in the source files.

Model sensor data

Low cost sensor data needs calibration, with more or less complex regression algorithms. This can be done at times with a
simple linear regression, but it is not the only case. Sensors generally present non-linearities, and linear models might not be
the bests at handling the data robustly. For this, a set of models ir rightly implemented, using the power of common
statistics and machine learning frameworks such as sci-kit learn, tensorflow, keras, and stats models.

Batch analysis

Automatisation of all this tools can be very handy at times, since we want to spend less time programming analysis tools
than actually doing analysis. Tasks can be programmed in batch to be processed automatically by the framework in an
autonomous way. For instance, some interesting use cases of this could be:

Downloading data from many devices, do something (clean it) and export it to .csv

Downloading data and generate plots, extract metrics and generate reports for many devices

Testing calibration models with different hyperparameters, modeling approaches and datasets

Share data

One important aspect of our research is to share the data so that others can work on it, and build on top of our results,
validate the conclusions or simply disseminate the work done. For this, integration with zenodo is provided to share
datasets and reports:

2.3 Source files
Download

Follow the guide to organize your data in tests.

examples

Check our guidelines on sensor deployment to see why this is important in some cases.

Guidelines on sensor development

•

•

•

Visit here!

Check the guides

Check one example in this notebook and this guide

Info

2.3Source files

- 7/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://en.wikipedia.org/wiki/Kalman_filter
http://scikit-learn.org/
https://www.tensorflow.org
http://keras.io/
http://www.statsmodels.org/dev/tsa.html#module-statsmodels.tsa
https://zenodo.org
https://github.com/fablabbcn/smartcitizen-iscape-data/blob/master/examples/upload_to_zenodo.ipynb
https://github.com/fablabbcn/smartcitizen-iscape-data/archive/master.zip

Check the source code

2.3Source files

- 8/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-iscape-data

3. A modular tool for citizen action

The guides in this section are aimed at creating a set of tools and resources around the SCK. This allows communities to
develop their own sensing frameworks and strategies for participatory sensing. Find here guides that will help with making
the best use of the Smart Citizen Kit, from a step-by-step guide on how to set up your kit to more advanced features like
data analysis or using the SCK's shell.

3.A modular tool for citizen action

- 9/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

4. Sensor Platform

The Smart Citizen platform supports the core features of the platform. That means this report documents new components,
developed specifically for the project, but also existing components that already existed and made possible the platform.

4.Sensor Platform

- 10/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

We believe building modular and reusable software and using existing platforms is critical towards optimizing the research
and development effort. By increasing the technology readiness levels of existing technologies, we can drastically improve
the project exploitation strategy.

The previous requirements led to the decision of building the core platform on top of the existing Smart Citizen Platform. The
platform is a front and backend solution for ingesting, storing and interacting with public data with a particular focus on
crowd sensing applications.

We prepared a series of guides to help you on the most common features you will use

Onboarding Sensors

Uploading SD Card Data

Downloading data

Check the guides

•

•

•

Check the developers ready API Documentation

Want to learn more?

4.Sensor Platform

- 11/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://developer.smartcitizen.me/
https://developer.smartcitizen.me/

4.1 Software components
Smart Citizen Website: It aims to provide a visual website where the project environmental sensors can be accessed in
near real time to facilitate the exploration of data with other contextual data (maps, keywords) and processed reports. This
is especially important towards citizens engaging at each local site having a sense of ownership over a technology
intervention has been associated with sustained community engagement (Balestrini et al. 2014). The main instance its
available at smartcitizen.me/kits. You can explore and contribute to the source. This is free software available under GNU
Affero General Public License (AGPL).

Smart Citizen API: The platform provides a REST interface for all the functionalities available on the Website. That allows
applications to be developed on easily on top having access to all the features to create complex and rich tools. The main
instance its available at api.smartcitizen.me. You can explore and contribute to the source. One examples of this tools is
the Sensors Analysis Framework or the iSCAPE Virtual Living Lab, both developed during the iSCAPE project) This is free
software available under GNU Affero General Public License (AGPL).

Onboarding app: It aims to facilitate the process of sensor setup to ensure that users, irrespective of technical expertise,
can install the sensors. It guides the user through the process of the setup using simple language and a friendly graphic
language. It is built as a separate tool from the core Smart Citizen Webpage in order it can be customized for each
deployment. It exchange data with the core platform using the Smart Citizen API. The main instance its available at
start.smartcitizen.me. There are also customized instances for specific projects such us
onboarding.iscape.smartcitizen.me or start.decode.smartcitizen.me. You can explore and contribute to the source. This is
free software available under a MIT License.

4.2 Source files
Check the source code

•

•

•

4.1Software components

- 12/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://smartcitizen.me/kits
https://github.com/fablabbcn/smartcitizen-web
https://api.smartcitizen.me/
https://github.com/fablabbcn/smartcitizen-api
https://github.com/fablabbcn/smartcitizen-iscape-data
http://https://livinglabs.iscapeproject.eu
https://www.iscapeproject.eu/
https://start.smartcitizen.me
https://onboarding.iscape.smartcitizen.me
https://start.decode.smartcitizen.me
https://github.com/fablabbcn/smartcitizen-onboarding-app-start
https://github.com/fablabbcn/smartcitizen-kit-21

5. Smart Citizen Kit

5.1 What is it?
The Smart Citizen Kit is the core of what we call the Smart Citizen System: a complete set of modular hardware
components aiming to provide tools for environmental monitoring, ranging from citizen science and educational activities
to more advanced scientific research. The system is designed in a extendable way, with a central data logger (the Data
Board) with network connectivity to which the different components are branched. The system is based on the principle of
reproducibility, also integrating non-hardware components such as a dedicated Storage platform and a Sensor analysis
framework.

On top of that, the system is meant to serve as a base solution for more complex settings, not only related with air quality
monitoring. For that purpose, in addition to the Urban Board, the system also provides off-the-shelf support for a wide
variety of third party sensors, using the expansion bus as a common port. One example is what we call the Smart Citizen
Station: a full solution for low cost air pollution monitoring.

5.2 Measurements
All the Smart Citizen Kit new sensors generation measure at least air temperature, relative humidity, noise level, ambient
light, barometric pressure and particulate matter (PM).

The SCK 2.0 was the development version for the now commercially available SCK 2.1 sponsored thanks to the iSCAPE project under European
Community’s H2020 Programme under Grant Agreement No. 689954

A note about versions

 Buy: seeedstudio.com

 Installation: start.smartcitizen.me

 Platform: smartcitizen.me

 Discuss: forum.smartcitizen.me

 Support: support@smartcitizen.me

Quick links

Have a look a the supported sensors in the Firmware!

The sensors

5.Smart Citizen Kit

- 13/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://www.iscapeproject.eu/
https://cordis.europa.eu/project/rcn/202639/en
https://www.seeedstudio.com/Smart-Citizen-Starter-Kit-p-2865.html
https://start.smartcitizen.me/
https://smartcitizen.me
https://forum.smartcitizen.me
mailto:%20support@smartcitizen.me
https://github.com/fablabbcn/smartcitizen-kit-21/blob/master/lib/Sensors/Sensors.h

5.2.1 SCK 2.1

The SCK 2.1 components are listed below:

Smart Citizen Kit 2.1 with Particle Sensor and battery (brackets or rain-proof enclosure currently not included)

MicroSD card and microSD adapter to SD.

USB cable and a USB charger.

1.

2.

3.

Measurement Units Sensors

Air temperature ºC Sensirion SHT-31

Relative Humidity % REL Sensirion SHT-31

Noise level dBA Invensense ICS-434342

Ambient light Lux Rohm BH1721FVC

Barometric pressure Pa NXP MPL3115A26

Equivalent Carbon Dioxide ppm AMS CCS811

Volatile Organic Compounds ppb AMS CCS811

Particulate Matter PM 1 / 2.5 / 10 µg/m3 Planttower PMS 5003

5.2.1SCK 2.1

- 14/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

5.3 Installation instructions
The sensor comes mounted and almost ready to be used:

The first step is to connect the battery. The kit will light in red (configuration mode) and we will be able to configure it by
following the instructions at start.smartcitizen.me.

5.3 Installation instructions

- 15/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://start.smartcitizen.me

After the configuration process, data will be available on the SmartCitizen platform. You can explore the data there or
download it using the CSV Download option (guide here)

5.3 Installation instructions

- 16/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

5.4 Power management

5.4.1 Battery duration

The SCK comes with a 2000mAh LiPo battery. The battery is meant to be a complete power option for short-term
measurements and a backup solution when the kit it is used for long periods. For long exposures, we recommend to
permanently connect the USB to kit. The battery duration is dependent on which sensors are enabled or disabled:

All sensors publishing over Wi-Fi: 12 hrs.

All sensors publishing on SD card: 13 hrs.

Without air quality sensors over Wi-Fi: 10 days

Without air quality sensors on SD card: 25 days

You will note that the kit turns itself off while operating on battery. Actually, this is what we call sleep-mode , an operation
mode implemented to reduce consumption while on battery operation.

5.4.2 Battery charging

The SCK has a micro USB port and can be charged like any Smartphone or Tablet using a dedicated adapter or a computer
USB port.

We recommend using a tablet power adaptor, instead of a computer USB port, for quicker charging. Autonomy can be
extended by using a Power Bank, or a 5V PV Panel.

5.4.3 User feedback

The LED serves as an indication of the battery status. If the LED is flashing orange it indicates that the battery must be
charged. The battery takes about 4 hours to fully charge. When the battery is fully charged, the LED will change from

orange to green .

•

•

•

•

5.4 Power management

- 17/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Remember that in addition to these colors you will have the state color of the kit: configuration, network and sd.

5.5 User interfaces
The data board features a set of user interfaces which provide feedback to the user, as well as two buttons with different
functionalities. The main RGB LED provides general feedback of the data board status. Additionally, two buttons are

Find more details under the data board section

More details

5.5 User interfaces

- 18/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

provided for user action. A hardware reset button, which forces a power cut to the board, and a power button, used to
change the device's mode, turn on and off the device, and to perform a factory reset. You can see both buttons below:

5.5.1 The button

The main button interaction is detailed below:

An example is shown below:

Function Button action

ON Push the button

OFF Push the button for 5 seconds

CHANGE MODE
Push the button multiple times to choose: Setup Wi-Fi Pink

FACTORY RESET Push the button 15 seconds for a full reset

5.5.1The button

- 19/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

5.5.2 Operation modes

 Setup mode

In this mode, the Kit is ready to be configured in network mode or SD card in start.smartcitizen.me.

Have a look at the troubleshoothing section to check how you can use the buttons in case of problems with your SCK!

Troubleshooting

LED color Kit status

 Ready to be setup

 Ready to be setup but battery is low, charge the Kit

 Ready to be setup, battery charging

 Ready to be setup, battery charged

5.5.2Operation modes

- 20/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://start.smartcitizen.me/

 Wi-Fi mode

This is the standard mode for a network that requires a Wi-Fi connection. In this way, the device will publish the data every
minute on the smartcitizen.me platform. If there is an inserted micro SD card, the data will be stored in duplicate.

 SD card mode (offline)

If we do not have an internet connection we can use the SD mode. In this case the device will record the data on the micro
SD card. Later we can read the card using a card reader. The data can be visually spaced in a spreadsheet but also
published on the smartcitizen.me platform using the UPLOAD CSV option.

LED color Kit status

 Collecting data online

 Error while collecting data

 Collecting data online but battery is low, charge the Kit

 Collecting data online, battery charging

 Collecting data online, battery charged

 The kit supports Wi-Fi WEP, WPA/WPA2 and open networks that are common networks in domestic environments and small businesses.

 But, it does not support WPA/WPA2 Enterprise networks such as EDUROAM or networks with captive portals such as those found in Airports and
Hotels

Warning

LED color Kit status

 Collecting data offline

 Error while collecting data

 Collecting data offline but battery is low, charge the Kit

 Collecting data offline, battery charging

 Collecting data offline, battery charged

5.5.2Operation modes

- 21/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://smartcitizen.me
https://smartcitizen.me

Especial status

5.6 Software Updates
Sofware updates are release frequently in the Firmware repository. These updates will need to be applied periodically to the
two main components of the SCK: the SAMD21 (main processor) and the ESP8266 (Wi-Fi module). Check the instructions
under the Update the Firmware section for more information.

Check the guide on how to upload the sd card data here

Guide

The files in the sdcard have the following naming: YYYY-MM-DD.CSV, however, you will find in the some extra files (.01, .02...) These are data files that
the sensor creates once there is a reset and, to avoid corruption, it creates a new file in the sd-card, by changing the file-extension.

A reset takes place every night at 3-4am with the purpose to avoid data loss because a problem. The SCK then stores the data in a file with a sequential
name, and does so by changing the filename to YYYY-MM-DD.01, .02… etc depending on the amount of resets it sees during that day. You can see the
data and work with it by changing the name from YYYY-MM-DD.01 to YYYY-MM-DD_01.CSV. Check the guide on how to organise your data to
automatise this.

Weird files?

LED color Kit status

 Busy, please wait!

 Software update going on!

5.6Software Updates

- 22/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-kit-21

6. Smart Citizen Station

The Smart Citizen Station was born with the idea to provide the iScape Living Labs with a system for monitoring the
performance of their interventions. The Station aims at providing a solution that can be used by the Living Labs not just
from a scientific point of view but also as a tool to engage local communities on air pollution related issues.

6.Smart Citizen Station

- 23/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

The station is designed with a modular principle where sensors can be added easily added expanding the capabilities of the
installation or replaced when they are damaged or the sensors lifetime is over. From a costs perspective while being more
expensive than the Smart Citizen Kit it is also conceived as a low-cost solution.

6.Smart Citizen Station

- 24/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

6.Smart Citizen Station

- 25/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

The design builds on top of the Smart Citizen Kit adding an extra set of more accurate sensors especially aimed at
measuring air pollutants. The sensors include the Gas Sensor Board, featuring EC Carbon Monoxide, Nitrogen Dioxide and
Ozone sensors and the PM Sensor Board, featuring a PM 2.5 / PM 10 sensor.

With all the sensor together this Kit provides information on Air Temperature, Relative Humidity, Noise Level, Ambient Light,
Barometric Pressure, Particles Matter (PM 2.5 / 10), Carbon Monoxide, Nitrogen Dioxide and Ozone. The sensors are later
described in detail in the document at the Sensor Components section.

6.1 Components
The Station is a modular system based on different sensor board that connected to a central datalogger.

The iScape Living Lab Station 1.0 was the development version for the 2.0 version. It was sponsored thanks to the iSCAPE project under European
Community’s H2020 Programme under Grant Agreement No. 689954

A note about versions

6.1Components

- 26/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://www.iscapeproject.eu/
https://cordis.europa.eu/project/rcn/202639/en

Smart Citizen Stations Components Setup

6.1Components

- 27/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

6.1Components

- 28/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

6.2 Sensors

Measurement Units Sensor Component

Air Temperature ºC Sensirion SHT-31 Urban Sensor Board

Relative Humidity % REL Sensirion SHT-31 Urban Sensor Board

Noise Level dBA Invensense ICS-434342 Urban Sensor Board

Ambient Light Lux Rohm BH1721FVC Urban Sensor Board

Barometric pressure and AMSL Pa and Meters NXP MPL3115A26 Urban Sensor Board

Carbon Monoxide ppm Alphasense CO-B4 Gas Sensor Pro Board

Nitrogen Dioxide ppb Alphasense NO2-B43F Gas Sensor Pro Board

Ozone ppb Alphasense OX-B431 Gas Sensor Pro Board

Gases Board Temperature ºC Sensirion SHT-31 Gas Sensor Pro Board

Gases Board Rel. Humidity % REL Sensirion SHT-31 Gas Sensor Pro Board

PM 1 µg/m3 Plantower PMS5003 Dual System PM Sensors Board

PM 2.5 µg/m3 Plantower PMS5003 Dual System PM Sensors Board

PM 10 µg/m3 Plantower PMS5003 Dual System PM Sensors Board

6.2Sensors

- 29/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

6.3 The Pack

Smart Citizen Station

Urban Board 2.1

Data Board 2.1

PM Board 2.0 + 2 PM sensors

Gas Pro Board 2.0 with 3 EC sensors

6Ah Battery

Accessories

MicroSD card 512MB

USB Charger

MicroSD to SD card adapter

Smart Citizen Power Supply (Traco P.S. 230AC in - DC5V out)

2m 3-Wire 220V cable

Mounting brackets

Mounting tools (1 x Allen Key)

Enclosure

Mounting bracket

Thermoconformed Umbrella

6.4 Instructions
To start the installation simply visit the setup website stations.iscape.smartcitizen.me

Below the detailed list of components for the Smart Citizen Station V2.0. You can find more information regarding the iScape Living Lab Station V1.0,
visit here.

Versions

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

6.3The Pack

- 30/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://stations.iscape.smartcitizen.me

6.4.1 Sensor considerations

Electrochemical sensor

The electrochemical sensors need stabilisation time under the testing conditions they will be at. It is important to set and
power the sensors with sufficient time (1-2 days) on the test environment for them to adapt. The newer the sensor, the more
stabilisation time it requires. For this deployment, you will be receiving brand new sensors.

Humidity and temperature extremes will require of further sensor adaptation, in order to dry out or absorb the necessary
humidity for their proper functioning.

We keep track internally of all sensor deployments and it is very important not to swap the internal components between Station to avoid mismatchs on
the calibration data.

Warning

Deployment considerations are listed here

More info

Do not extract/attach the sensor capsule from the base board while powered, this could irreversibly damage the sensor.

Danger

6.4.1Sensor considerations

- 31/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Particle Sensor

The particle sensors measurements are delivered as averages of the two sensors with periodic validity checks. We are
currently developing one-shot strategies for battery life improvement, but in the meantime, please make sure the sensor has
reliable energy supply if you will use these sensors permanently.

6.5 Power
The kit has a battery life of 12 hours as is intended as a backup solution only. That's why a power supply needs to be
installed as decribed below.

When we no longer want to publish or save more data for a few days we can turn off the kit. To do this, press the button for 5
seconds.

If the colors of the LED appear orange indicates that the battery must be charged.

The battery takes about 4 hours to fully charge. When the battery is fully charged, change the orange to green .

Remember that in addition to the colors you will have the state color of the kit: configuration, network and sd.

6.5.1 Power supply

The Station can be directly powered at 220V AC (max consumption 5W).

The Smart Citizen Station has a higher consumption than the kit, mostly due to the fans on the two PM sensors.

That means the internal battery last just for 20h, and it is only aimed at providing backup power.

For example, we can connect the station on the street light electric line, so the Station gets charged during the night when the lights are on.

Batteries

6.5Power

- 32/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Unfortunately, we are having some problems with the PV Solar Panel system to power the Station independently. The system is currently under tests, and
it will be available in the next few months.

Solar Panel

If you need to change power supplies (iScape Living Lab Station V1.0), please visit here

Changing power supplies

6.5.1Power supply

- 33/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

7. Troubleshooting

7.Troubleshooting

- 34/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

7.1 The network won't show up
Before configuring the Kit, if the SmartCitizen[...] network doesn't show up, make sure the LED is red. If not, press the
button until the LED turns red.

Before trying anything else, the data board of your SCK comes with a very functional button that makes a hardware reset on the whole device. This is
probably our best first try once the kit has any problem. You can see it here:

Some issues this might help solving:

The kit hasn't been posting data for a while

The kit doesn't respond to user interaction with the ON/OFF button

The LED is fixed and does not react to anything

...

Pressing the reset button will not delete any configuration, it will simply restart your device. The light will go off and on and the device will start again with
a white LED.

This button is also to be used when reflashing the firmware, by double clicking it. Have a look at the guide here.

You can also perform a reboot by disconnecting the battery and the USB cable so that the kit is restarted. In this way we will not lose any data or
configuration. However, if we are in SD card mode , the kit won't know what time it is and we will need to give to him. For doing so:

Press the ON/OFF button once. The LED should be breathing RED.

Connect to the network SmartCitizen[...] and set it up again to log in SD card mode .

The magical reset button

•

•

•

•

•

•

7.1The network won't show up

- 35/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

7.2 Factory reset your kit
You can fully reset the Kit to the default settings so you can register again your device. Press the main button for 15
seconds.

After 5 seconds the light will go off and will go on again after 15 seconds. Then you can release the button and your device
will be fully resetted as a brand new Kit.

7.3 The LED does not turn on and the kit does not work
First of all, push the kit button. Maybe it's simply off.

If this does not work, most likely the kit has been left without battery. You will have to charge it using the USB charger. Any
other mobile charger will also work.

We will know that it is charging when the LED emits orange pulses and once the battery is charged it will emit green
.

If the kit does not respond at all, it is probably worth trying with another USB cable, in case there is some problem there. If
not, drop us an email or post on the forum

7.2Factory reset your kit

- 36/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

mailto:%20support@smartcitizen.me
https://forum.smartcitizen.me
https://forum.smartcitizen.me

7.4 The kit does not store the data on the SD card
Some SD cards may have problems over time. We can try formatting it, but in case it does not work any micro SD card we
buy at any mobile or computer store it will work. The size is not important and any micro SD or micro SDHC 512MB card up
to 32GB will work.

7.5 The kit does not boot with the PMS Sensor
Make sure that you power the Smart Citizen Kit with a good enough USB cable and with an adaptor that can provide at
least 1A. We have found some issues when powering the sensor with a thin cable, or from a weak power source, like a
screen.

7.6 Known (fixed) issues
In this section, we will detail some problems you might have found in the early firmware versions of SCK 2.1.

7.6.1 Light sensor reads 0 and temperature/humidity sensor does not work

The issue is caused due to a firmware bug (light) and a problem with some SHT31 sensors (also fixed by firmware). A full
explanation is detailed in the forum and the fix was released with V0.9.4 of the SAMD firmware.

7.4The kit does not store the data on the SD card

- 37/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://forum.smartcitizen.me/t/the-light-sensor-is-fixed/1172
https://github.com/fablabbcn/smartcitizen-kit-21/releases/tag/0.9.4

8. Use cases

The Smart Citizen project has had the chance to be part of fantastic projects throughout it's brief history. Ranging from
public interventions in urban areas to the development of DIY sensors for agriculture, the team has carried out an enormous
efforts to develop a technical platform that supports a wide range of communities on the creation of participatory sensing
initiatives.

This section is a summary of these projects that might inspire you in future actions. They show the vast amount of
possibilities offered by the Smart Citizen tools as key enablers of participatory sensing pilots and experiments.

8.Use cases

- 38/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

By providing meaningful examples of novel appropriations and uses we seek to spire communities to conduct their own
experiments and, hopefully, even their own custom tools.

All these projects left us with a great amount of experience and knowledge that we have compiled in this documentation. Find out how to use them in our
guides section:

Create interfaces for your data

Use of third party sensors and adding data from other platforms

DIY sensors for agriculture

Check our guides

•

•

•

8.Use cases

- 39/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Use%20cases/Citizen%20Sensing%20Toolkit
Use%20cases/Citizen%20Sensing%20Toolkit

9. Frequently asked questions

9.1 Can the sensors be placed outdoors?
Yes. The sensor is designed for both indoors and outdoors use. But if you’re planning to use it outdoors, you will have to
consider purchasing also a rainproof enclosure.

9.2 Can I make my own rainproof enclosure?
Of course! The manufacturing files for the 3D printed enclosure will be available to download in the Enclosures repository.
Throughout the history of the Smart Citizen project, we’ve seen many inventive solutions for placing the sensor outdoors.

9.3 Can I charge the sensors with a solar panel?
Sure! But note that the sensor requires a 5V solar panel to work properly. Keeping that in mind, you can buy one of the
photovoltaic panels that we provide, or run your own tests.

9.Frequently asked questions

- 40/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-enclosures

9.4 Can I add external sensors to the system?
Yes. The sensor has an independently configurable auxiliary bus at 3.3V with a SEEED Grove connector. The Bus has native
support for I2C, but it can also be setup on firmware as a GPIO or UART. It can supply power up to 750mA, and it can be
enabled or disabled by software.

9.5 What happens if there is a loss of network connectivity?
If the sensor is working in network mode and at any time the network is not available, it will store the data on its internal
memory and publish all the collected data as soon as the network is available again.

9.6 Which external sensors can be added?
For the moment, the list of supported sensors includes some Atlas Scientific probes, some Seeed Grove sensors, and the
Chirp moisture sensor, but the options are almost endless. We will add tutorials to use the additional sensors listed above in
our documentation.However, in the short term we will only offer support for them via our custom hardware development
services.

9.7 Will I be able to access the collected data?
Of course! The data collected by your sensor is available for anyone on the Smart Citizen Platform, and you can download it
at any time as a CSV file. Besides, you can also use the API to built custom applications to interact with your device.

9.8 How does the kit record the data?
The sensor can work in network and SD card modes. In network mode, the sensor publish data to the SC platform over Wi-Fi
every minute. In SD card mode, all the collected data is stored locally in CSV format, and it can be later uploaded manually
to the platform using the “Manual Data Upload” option.

9.9 What networks does it support?
The SCK supports Wi-Fi WEP, WPA/WPA2 and open networks that are common networks in domestic environments and
small businesses. However, like many other embedded devices such as Apple TV® or Chromecast®, it does not support
networks with captive portals such as those found in Airports and Hotels. Currently, it also does not WPA/WPA2 Enterprise
networks such as EDUROAM. However, they will be supported in the future after a firmware updated.

9.10 Is there a mobile phone app that lets me view the data?
Currently there is an android app available, but we are working to make the website fully mobile device friendly, so that no
mobile phone app is required. We would rather focus the time of our small team on the kits themselves instead of
maintaining apps. So our final aim is to be app free, but fully mobile friendly.

9.4Can I add external sensors to the system?

- 41/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://smartcitizen.me/kits/

9.11 How accurate are the measurements?
Weather, noise, light and PM sensor measurements have been calibrated and validated against reference sensors through
both in-house and external validations and they provide accurate data. Chemical gas sensors are to be considered
qualitatively rather than quantitatively while calibration algorithms are developed for data accuracy improvement.

9.12 Are there any notable case studies using similar sensors?
Yes! A particularly interesting case study is the Making Sense project at Plaça del Sol in Barcelona, where a group of 15
technology enthusiasts and environmentalists joined a community of neighbours from a middle-class district that has been
suffering from noise issues due to the nightlife in the square. You can find more information about this case study at:
www.making-sense.eu

9.13 What happens if I want to move the device or give it to someone else?
Just by pressing the button you can fully reset your sensor and configure it again using your account or a new one. All your
previous data will remain available on the platform as it was before the reset.

9.14 What about using other wireless technologies?
We are working closely with Barcelona’s The Things Network community to develop a TTN enabled sensor. A LoRA
prototype has been tested, but we don’t have dates for the final version yet. BLE, Zigbee, or others are not currently
supported, and except for G5, we are not planning to implement them unless there is a custom hardware integration
demand.

9.15 Can I remove my data from the platform?
Of course. You are the owner of the data that you collect, and you can download and/or delete all your sensor data at any
time.

9.16 How can I retrieve the MAC address from my device?
You can retrieve the MAC address with two methods: either you can use your phone (see below), or follow this guide if you
want to try out the console interface in the kit.

Using your phone

Set the SCK in setup mode (press the button once, the LED should turn red).

With your phone, join the Wi-Fi network created by your Kit; it should be SmartCitizen[…].

Once you are on your Kit configuration page, go to the Info section. You will see a page with all the information about your
Kit.

Your MAC address is listed as seen below:

1.

2.

3.

4.

9.11How accurate are the measurements?

- 42/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://www.making-sense.eu

9.17 What batteries are shipped with the kits?
The default SCK 2.1 Kits come with a 2000mAh LiPo battery model PL804050 (see datasheet and material safety data
sheets).

For custom projects we also offer a bigger 6000mAh LiPo battery model DTP605068 (see datasheet and material safety
data sheets).

We are working on a new dynamic battery calculator. Currently, you can find some approximate data here for the SCK 2.1.

9.18 Are the electronics waterproof?
No. They cannot be exposed to water, high humidity, corrosive environments, or moisture. Always use an enclosure when
exposed outdoors. Highly humid environments can provoke corrosion in the sensors (symptom of this is blue powder near
the sensors in the urban board). To help protect them, we recommend using transparent nail polish in these areas. Do not
obscure the areas in red:

9.17What batteries are shipped with the kits?

- 43/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

If you are using any enclosure from the repository, we also recommend using a filtration foam (PPI-20/10) like this one. More
info here

9.18Are the electronics waterproof?

- 44/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-enclosures/tree/master/SmartCitizen%20Outdoor%20Cases%20V2.0-2.1
http://www.infiltro.es/index.php/filtro-de-aire-2/prefiltros/item/foam
https://forum.smartcitizen.me/t/rain-tests-for-the-sck/1300

10. Components

10.1 Hardware Architecture

The project's sensor platform builds on the legacy of previous Smart Citizen Kit generations to develop a new set of tools
especially aimed at providing meaningful data insights on a low budget. The system is designed in a extendable way, with a
central data logger with network connectivity to which the different components are branched and aims to give support to a
various activities ranging from education to more advanced scientific research.

We believe building modular and reusable hardware is critical towards optimizing the research and development effort. By
increasing the technology readiness levels of existing technologies, we can drastically improve the project exploitation
strategy.

10.1.1 Hardware

The core system bases its sensing capabilities in widely reviewed low cost sensors, and aims to provide a solid framework
for environmental monitoring activities. Each of the modules is shown in the Figure below:

10.Components

- 45/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Data Board: A datalogger at the heart of the sensors architecure supporting the Smart Citizen Kit and the Smart Citizen
Stations.

Firmware: The software running inside the sensors.

Sensor Board: Multiple sensor board have been developed. They can be combined to built the different sensor solutions
as the Smart Citizen Kit and the Smart Citizen Stations:

Urban Sensor Board: A selection of low-cost sensors in a board ready to measure the urban environment:
temperature, humidity, noise, light, and PM2.5, among others. Together with the Data Board they create the Smart
Citizen Kit.

PM Sensor Board: An auxiliary board capable of driving two Particulate Matter sensor as well as other auxiliary
sensors required for specific deployments as an external temperature sensor or an anemometer. It is used in the Smart
Citizen Stations.

Gas Pro Sensor Board: An auxiliary board driving 3 Alphasense Ltd. Electrochemical Series B Gas Sensors designed
for ultra-low noise, high-performance and low power operation. It is used in the Smart Citizen Stations.

10.1.2 Open Source

We're against black boxes!

The entire project it is released under open source licenses:

Hardware components: CERN Open Hardware License v1.2

Core firmware: GNU GPL v3.0

Software platform: GNU AGLP v3.0

•

•

•

•

•

•

•

•

•

10.1.2Open Source

- 46/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Data%20Board
Data%20Board
Firmware
Firmware
Urban%20Sensor%20Board
Urban%20Sensor%20Board
Data%20Board
PM%20Sensor%20Board
PM%20Sensor%20Board
Gas%20Pro%20Sensor%20Board
Gas%20Pro%20Sensor%20Board
https://www.ohwr.org/licenses/cern-ohl/license_versions/v1.2
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/agpl-3.0.en.html

Check the Source files section for each component and explore the software source code and the hardware blueprints.

Info

10.1.2Open Source

- 47/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.2 Auxiliary Connector
The data board features a standard Grove connector where off-the-shelf modules from the same manufacturer can be
connected. The connector supports an independent I2C bus by default, but by software it can be configured to support
other uses (GPIO, I2C and UART). It can supply power up to 750mA, and it can be enabled or disabled by software to save
power.

10.2Auxiliary Connector

- 48/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.2.1 Supported sensors

General purpose

Seeed Groove ADC - 12 bit ADC from Seeed Studio

Adafruit INA219 - Supports Bus voltage, shunt voltage, current and load voltage

SparkFun ToF Range Finder Sensor - VL6180 - supports distance and light. Can be used for water level measurements

Environmental and air quality

Seeed Grove SHT31 Temperature/Humidity

Adafruit BME680 - supports temperature, humidity, barometric pressure and VOC gas

Atlas Scientific Temperature - can be used with any PT-100 or PT-1000 temperature probes

The Smart Citizen Kit is designed with a modular approach in mind. This means that the Urban Board is only a selection of low cost sensors for air
quality, but the hardware itself can be expanded for other use cases such as a more advanced air quality monitoring setup, soil monitoring, or water
quality. Make sure you check our guide on how to use them.

There is a lot more to it!

•

•

•

•

•

•

10.2.1Supported sensors

- 49/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://wiki.seeedstudio.com/Grove-I2C_ADC/
https://www.adafruit.com/product/904
https://www.sparkfun.com/products/12785
https://www.seeedstudio.com/Grove-Temperature-Humidity-Sensor-SHT31.html
https://www.adafruit.com/product/3660
https://www.atlas-scientific.com/product_pages/kits/temp_kit.html

Water measurements

Check the water measurements documentation with examples on sensors such us the Atlas Scientific Dissolved Oxygen
and the DS18B20 Water Temperature

Soil measurements

Check the soil measurements documentation with examples on sensors such us the Chirp Soil Moisture - supports soil
moisture (requires calibration), temperature and ambient light.

10.2.2 Other auxiliaries

Seeed Groove OLED screen (96x96) - the screen cycles through sensor readings

Expanding the base air quality solution, the Smart Citizen Station is a more advanced setup in a more rugged enclosure. The sensors below can be
directly plugged in and detected by the SCK:

Smart Citizen Gases Pro Board: supports 3 electrochemical alphasense sensors, temperature and humidity

Smart Citizen PM Board: supports 2 Plantower PMS5003 sensors, I2C extension, 4 ADC pins, 2 GPIO and a UART Serial port

Smart Citizen Station

•

•

•

Contact on how to implement sensors made by others.

Implement your own

10.2.2Other auxiliaries

- 50/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://www.atlas-scientific.com/product_pages/kits/do_kit.html
https://www.adafruit.com/product/381
https://www.tindie.com/products/miceuz/i2c-soil-moisture-sensor/
http://wiki.seeedstudio.com/Grove-OLED_Display_1.12inch/
mailto:support@smartcitizen.me

10.3 Data Board
The data board is a data-logger at the core of the sensors architecture supporting the Smart Citizen Kit and the Smart
Citizen Station. This module is powered by an ARM M0+ 32-bits 48Mhz SAMD21 running the Smart Citizen Firmware),
combining the low power consumption of the ARM M0 family with the power of a 32-bits processor with 32KB of RAM and
256KB of FLASH memory. This solution offers enough program storage and memory space to support multiple auxiliary
sensors. This chip is used by the Arduino Zero and MKR boards, therefore benefiting from the open community built around
these boards in particular and the Arduino project in general.

Check the source code

The data board also includes a Wi-Fi module, a micro SD card slot, an internal Flash and a battery management solution. In
addition, it includes 4MB of extra Flash Memory for offline data storage, in case of network brownouts. The Wi-Fi Module is
the well-known Espressif ESP8266 IEEE 802.11 b/g/n Wi-Fi with 4MB Internal Flash for web content storage:

10.3Data Board

- 51/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-kit-21
https://www.espressif.com/en/products/hardware/esp8266ex/overview

The Data Board connects to the sensor board providing power, analog and digital communications (12 bits ADC, GPIO, I2C,
I2S, VCC). The data board also includes a Seeed Studio standard Grove connector where off-the-shelf modules from the
same manufacturer can be connected. The connector supports an independent I2C bus by default, but by software it can
be configured to support other uses (GPIO, I2C and UART). It can supply power up to 750mA, and it can be enabled or
disabled by software to save power.

The board includes a power unit, with a battery management system, capable of handling a variety of Lithium polymer cells.
The batteries are connected to a standard JST-2 pin battery connector. The Smart Citizen Kit by default uses a 2000mAh
battery, but larger capacities can be used. Under normal conditions, and depending on the sensors enabled, a 2000mAh
battery can last between 24 hours (with all sensors enabled, and a 1-minute recording frequency) to more than a week. The
board also features a sleep mode, through which drastically lower average consumption are achieved.

The controller allows the batteries to be easily charged using the boards micro USB connector using any standard USB
power adapter like the ones used on Smartphones. On remote areas, it can also be powered using a selection of PV Panels
like Voltaics Systems 6W panel.

10.3.1 Firmware

The Smart Citizen Kit firmware is comprised of two parts: 1) the primary processing tasks are done by the SAMD21
microcontroller firmware; 2) the tasks related to network communication are run through the ESP8266. The SAMD21 is built
on top of the Arduino Zero with a custom variant for the Data Board main MCU. The ESP8266 is also built using the Arduino
ESP Core. Both firmwares are built and managed with Platform IO, an open-source IDE for embedded development. Platform
IO features built-in dependency management and allows you to compile and upload both processors with a single
command. Using the SWD ARM connector you can change the MCU bootloader and debug the firmware using Open
Source tools.

Learn more about the software running inside the Data Board on the Firmware section.

Info

10.3.1Firmware

- 52/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://www.voltaicsystems.com/

10.3.2 Buses

Sensor Boards connector

The Kit features a modular architecture where sensors can be updated independently by replacing any individual Sensor
Board. The Sensor Boards features GPIO, ADC, I2C, UART and I2S connections at 3.3V. Currently, we only offer the Urban
Sensor Board, but more boards are on the way, and you can even design and build a custom one.

Check the firmware guides and learn how to update and even modify the software:

Debug the Firmware

Edit the Firmware

Update the Firmware

Software guides

•

•

•

Example of a Sensor Board

10.3.2Buses

- 53/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Auxiliary connector

The Data Board features and independent configurable auxiliary bus at 3.3V with a SEEED Studio Grove connector. The Bus
has native support for I2C, but it can also be setup on firmware as a GPIO or UART port. It can supply power up to 750mA,
and it can be enabled or disabled by software.

SAMD21 Pins Arduino Zero Pin SCK Pins SCK Conector SCK Conector SCK Pins Arduino Zero Pin SAMD21 Pins

GND GND GND 16 15 GND GND GND

GND GND GND 14 13 GND GND GND

PA11 0 I2S_FS 12 11 TX A5 PB2

PA7 9 I2S_SD 10 9 RX 25 PB3

PA10 1 I2S_SCK 8 7 5V 5V 5V

PA22 20 SDA 6 5 PWM_CO 13 PA9

PA23 21 SCL 4 3 PWM_NOX 14 PA8

VCC VCC VCC 2 1 VCC VCC VCC

Example of devices connected via the AUX connector.

10.3.2Buses

- 54/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.3.3 Power management

The Smart Smart Citizen Kit gives us the possibility of running directly from a USB power source with or without lithium
battery, using the BQ24259 USB Charger. The charger manages external power regulation, battery fast charging (up to 2Ah)
and USB OTG that allow us powering other devices from the SCK (currently not implemented).

Normaly the SCK uses a 2000 mAh Lithium polymer battery but it is possible to take advantage of larger batteries. The
charging current is regulated with a manual imposed limit that can be configured, and also auto adjusts to the connected
USB charger capacity. It is also possible to use solar panel (5v) to charge the SCK.

The power consumption of the kit depends on which sensors are enabled and how often they are read/published. Between
readings the kit goes to sleep mode turning off almost all the subsystems and reducing the power consumption.

In previous versions of the kit (V2.0 and before), the most power-hungry sensors were the SGX MICS gas sensors (NO and
CO) which need an always-on heater with a permanent consumption of around 50 mAh (35 hours per charge). In V2.0 and
V2.1, the PM sensor needs a fan with a consumption of 35 mAh (50 hours per charge). To improve the power consumption,
the PM Sensor works on one-shot mode which turns the sensor off for ¾ths of the time, and only taking a reading after the
sensor has stabilised.

The kit normal operation cycle on battery is: read sensors, post, and then go to sleep. Until the battery charge is below 3%.
When that threshold is passed it will enter an emergency sleep mode and interrupt all the normal functions until the charge
goes over 5%.

Power consumption

The base power consumption of the device is 16mA (no sensors or wifi connection). While posting data online, the
consumption can go up to 75mA accounting for the ESP8266, with an additional 90mA if all the sensors are to be working at
the same time (Urban Sensor Board + PM sensor).

10.3.4 Source files

Download

Check the source code

2

10.3.3Power management

- 55/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://www.ti.com/lit/ds/symlink/bq24259.pdf
https://en.wikipedia.org/wiki/Lithium_polymer_battery
https://github.com/fablabbcn/smartcitizen-kit-21/archive/master.zip
https://github.com/fablabbcn/smartcitizen-kit-21

10.4 Deployments
This page is a compilation of information regarding the operation in the field of the Smart Citizen Station. Since there are
different versions, please, refer to their section accordingly.

10.4.1 Living Lab Station V2

This version is in production stage and no information is currently available.

WIP

10.4Deployments

- 56/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.4.2 iScape Living Lab Station V1

The Pack

iSCAPE Living Lab Station

Urban Board 2.0

Data Board 2.0

PM Board 2.0 + 2 PM sensors

Gas Pro Board 2.0 with 3 EC sensors

6Ah Battery

Accessories

MicroSD card 512MB

USB Charger

MicroSD to SD card adapter

USB Power Supply

2m 3 Wire 220V cable

Mounting brackets and screws

Mounting tools (1x Wrench + 2 Allen Keys)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

10.4.2iScape Living Lab Station V1

- 57/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Instructions

ON BOARDING

To start the installation simply visit the setup website stations.iscape.smartcitizen.me.

10.4.2iScape Living Lab Station V1

- 58/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://stations.iscape.smartcitizen.me
https://stations.iscape.smartcitizen.me

GET DATA FROM THE SD CARD

You will need to access the Kit in order to get the SD card. For this, first unscrew the two white layers at the top of the
station with the keys provided in the Pack:

 We will need you to send us the following information once you are done with the setup: the device ID, which appears in the URL of your device
https://smartcitizen.me/kits/XXXX and the physical station ID that corresponds to that device ID, which can be found in a sticker underneath.

Warning

10.4.2iScape Living Lab Station V1

- 59/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://smartcitizen.me/kits/

Then turn off your Kit by pressing the button for 5 seconds and remove the micro SD card. You can plug the card on your
computer using a Micro SD card reader.

10.4.2iScape Living Lab Station V1

- 60/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

You will find inside a YYYY-MM-DD.CSV with all the data. You can follow the Manual CSV data upload guide to manually
upload the data to the platform.

Outdoor installation

Use the perforated steel tape and the M6 provided to mount the Station on any street light or pole. The Pack also includes
the required wrench:

Handle the SD card with care! It might drop inside the station

Warning

Once you are done uploading the data and you want to keep on logging, put the SD card back in with the Kit OFF and press the button. It will come
back to life!

Power it back on!

10.4.2iScape Living Lab Station V1

- 61/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Also, a temperature probe needs to be extracted from the bottom of the station:

10.4.2iScape Living Lab Station V1

- 62/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

And it should look like this:

10.4.2iScape Living Lab Station V1

- 63/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

UMBRELLA COVER INSTALLATION

Due to some issues with the waterproofness of the Living Lab Station, we have developed a solution to protect it from the
rain. This solution is shown in the pictures below, and it's meant to solve these problems for the current version of the LLS.
The newer version of the LLS has a simpler setup, already including such cover to protect it from the rain or sun radiation.

10.4.2iScape Living Lab Station V1

- 64/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

This is what you get in the package (except the wrench):

As you can see, the cover is a rugged piece and it's only meant for the current version of the station. Please, be careful and do not fit it in places where
people could bump into it.

Beware of collisions

10.4.2iScape Living Lab Station V1

- 65/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.4.2iScape Living Lab Station V1

- 66/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Step by step

10.4.2iScape Living Lab Station V1

- 67/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

If you have the 3D printed cover on the Smart Citizen Kit, it's time to remove it.

There is no need to remove the two top white layers (in the pictures we did it without them)

Insert the threads in the already mounted t-slots. The distance between them is ~50mm

•
•

•

10.4.2iScape Living Lab Station V1

- 68/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Insert the 4x flat spacer in the threads•

10.4.2iScape Living Lab Station V1

- 69/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Place the cover on the station•

10.4.2iScape Living Lab Station V1

- 70/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Place the serrated spacers, with the serrated side on the outer part (they help to hold the station in place)

Place the perforated steel stripe in one of the sides. Don't tight it too much, so that you have room to place it in the pole

•

•

10.4.2iScape Living Lab Station V1

- 71/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Put the station in it's final location, and tighten it with the perforated steel stripes. Play with both sides, so that the stripes are tight on the pole•

10.4.2iScape Living Lab Station V1

- 72/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

You are done!•

10.4.2iScape Living Lab Station V1

- 73/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Power supply

The Station can be directly powered at 220-240V AC (Max. consumption with the AC supply is 5W). It can also be powered
via USB, with a normal phone charger (5V and 750mA max). However, there is a bit to do in order to change it. Let's see how!

The Living Lab Station has a higher consumption, mostly due to the fans on the two PM sensors.

That means the internal battery last just for 20h, and it is only aimed at providing backup power.

For example, we can connect the station on the street light electric line, so the Station gets charged during the night when the lights are on.

Batteries

10.4.2iScape Living Lab Station V1

- 74/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

CHANGING POWER SUPPLIES

Before we start, some tools that will be helpful during the process:

Unfortunately, we are having some problems with the PV Solar Panel system to power the Station independently. The system is currently under tests, and
it will be available in the next few months.

Solar Panel

10.4.2iScape Living Lab Station V1

- 75/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Unplug the station before starting this process from any type of external supply

Danger

10.4.2iScape Living Lab Station V1

- 76/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Step by step

10.4.2iScape Living Lab Station V1

- 77/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Remove the two covers using the allen keys as explained on the setup instructions.

Remove the layer which contains the kit. The kit is attached to the layers below, as seen in the image

Unplug the different connectors in the kit: I2C, battery and USB

•

•

•

10.4.2iScape Living Lab Station V1

- 78/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

You can use nose pliers for the USB and the battery•

10.4.2iScape Living Lab Station V1

- 79/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Time to get to the power layer, this time, two blue layers will come off

Unscrew the cover for the power area

•

•

10.4.2iScape Living Lab Station V1

- 80/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Make sure there is no energy left in the power supply by checking that there is no LED on in it. Then, remove the cables from the power supply and
the white brackets

•

10.4.2iScape Living Lab Station V1

- 81/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Extract the cable from the base's cable gland

Cover the cable gland again and remove the square cable gland on the other side

•

•

10.4.2iScape Living Lab Station V1

- 82/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Exchange the rubber in the cable gland with the one provided with a hole•

10.4.2iScape Living Lab Station V1

- 83/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Put the cable in and fix the gland in place. Leave sufficient overhead in the cable to be able to connect it to the kit•

10.4.2iScape Living Lab Station V1

- 84/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Put the power cover back on•

10.4.2iScape Living Lab Station V1

- 85/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Put the kit's layer back on and pass the cables through

Connect everything in this order: first, the I2C connector, second, the battery, third, the USB

•

•

10.4.2iScape Living Lab Station V1

- 86/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Put the kit's layer on again. Verify that the o-ring fit's in properly. Close everything and put both layers back on on•

10.4.2iScape Living Lab Station V1

- 87/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Now, you can use the USB power supply or the battery pack!•

10.4.2iScape Living Lab Station V1

- 88/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.4.2iScape Living Lab Station V1

- 89/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Dimensions

10.4.2iScape Living Lab Station V1

- 90/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Troubleshooting

BEFORE SETUP

Before configuring the Station setup make sure the LED is red. If not, press the button multiple times until the LED turns red.

THE STATION DOES NOT RESPOND

If the station does not respond or does not work properly you can do two things:

10.4.2iScape Living Lab Station V1

- 91/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

You can fully reboot your Station by pressing the reset button located under the sensors board as seen on the picture. That will not delete any
configuration, it will simply restart your device. Press the RESET button for a second. The light will go off and on and the device will start again.

You can also perform a reboot by disconnecting the battery and the USB cable so that the station is restarted. In this way we will not lose any data and
configuration except the time in case of being in SD mode.

Reboot your Station

10.4.2iScape Living Lab Station V1

- 92/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

THE LED DOES NOT TURN ON AND THE STATION DOES NOT WORK

First of all, push the station button. Maybe it's simply off.

If this does not work, surely the station has been left without battery. You will have to charge it using the USB charger. Any
other mobile charger will also work.

We will know that it is charging when the LED emits orange pulses and once the battery is charged it will emit green

The station does not store the data on the SD card.

Some SD cards may have problems over time. We can try formatting it but in case it does not work any micro SD card we
buy at any mobile or computer store it will work. The size is not important and any micro SD or micro SDHC 512MB card up
to 32GB will work.

You can fully reset the Station to the default settings so you can register again your device. Press the main button for 15 seconds.

After 5 seconds the light will go off and will go on again after 15 seconds. Then you can release the button and your device will be fully resetted as a
brand new Station.

Factory reset your Station

10.4.2iScape Living Lab Station V1

- 93/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Sensor Evaluation Campaign

Prior to sensor deployment for the intervention monitoring, some of the Living Lab Stations will be evaluated and compared
against reference measurement under different conditions. They will be deployed in several cities among the iScape
partners in order to 1. develop models for sensor calibration under different climatic and pollutant exposure conditions and
2. assess data quality. This campaign intends to evaluate the Living Lab Station before it's deployment, and trying to
prevent concerns raised about data quality that other low-cost sensor platforms .

This evaluation will focus on the real-world conditions calibration, under wide range of exposure and climatic conditions,
rather than developing tests in controlled conditions, as prior studies show discrepancies in the accuracy resulting from
evaluation in laboratory conditions, versus that of outdoor conditions . The tests will be conducted by co-location of at
least two stations per site with high-end sensors under the conditions indicated in the test section below.

The duration of the tests will be of 2,5 months, with two location changes. This is a compromise between the indications
given in for at least 3-months campaign and the availability of high-end sensors for the evaluation. Nevertheless, this
campaign intends to cover a range of conditions by the deployment of the Living Lab Station in diverse conditions, not only
climatic but also exposure-wise. The location changes will also intend to evaluate how well the sensors are able to adapt to
these exposure and climatic changes . The data will be uploaded to the SmartCitizen Platform and will be analysed using
the Sensor Analysis Framework. The results of this evaluation in terms of models will be uploaded to a dedicated repository
and will be implemented on the SmartCitizen Platform for on-the-fly sensor data processing. This processing aims to
provide an open platform for sensor analysis using data analysis techniques, need which has been highlighted by .

As well, as stated in , it is necessary to perform individual field calibration for low-cost sensors if measurements
comparable to those of high-end solutions are targeted. However, this calibration might not always be feasible in a wide
range of conditions, leading to non-generalised models which can perform badly out of the training datasets. This test

2 3 4

2 5 6

1

10

2 5 6 9

2 10 11

10.4.2iScape Living Lab Station V1

- 94/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://www.smartcitizen.me
https://github.com/fablabbcn/smartcitizen-iscape-models

campaign also aims to study this concern, with an evaluation for a cross calibration methodology, in which results from a
limited subset of observations are applied to the complete dataset . If successful, this would be set ground for the
development of calibration strategies where the sensors are co-located with a high-end sensor and posteriorly deployed for
citizen-science activities, or long term monitoring of the iScape Living Labs interventions, where high end sensors might
not be available. This co-location could be performed in a recurrent manner, performing sequences of calibration-
deployment-calibration, using merging calibrations as suggested in .

As a summary, this field campaign aims to cover the following points:

Assess data quality levels and positioning with respect to the DQO set by the European Air Quality Directive

Stablish match scores for the different range of sensors available in the Living Lab Station

Validation and assessment of EC sensor methodology for NO2 and O3 compounds in urban conditions (urban background
and traffic) in various sites

Validation of PMS PM raw data accuracy and effect of climatic conditions

Calibration of Alphasense’s EC sensors and PMS PM sensors for model quality improvement accounting for climatic
conditions

Feasibility assessment for the calibration of metal oxide sensor models with the use of reference data and/or Living Lab
station data

Validation of climatic sensors of the station itself (temperature, humidity, pressure)

Drifts and stability:

Drifts and possible root causes for EC sensor sensitivities variations over time

Calibration stability for SGX MOS sensors

Sensor decay and recoverability of PMS sensors due to dust accumulation or others

TEST

The table below shows a description of the proposed test campaign:

The sites at which these calibration deployments are planned are:

7

11

•

•

•

•

•

•

•

•

•

•

•

Stage Duration Exposure Reference
equipment

Purpose

Pre-test 2 weeks Urban Background No Stabilise electrochemical sensors to urban background on site. and verify
overall functioning

Low
Exposure
test

1 month Urban Background Yes Evaluate response in low transient areas and evaluate repeatability of
urban background measurements in higher exposure testing phases

High
Exposure
test

1 month Urban with traffic
(canyon or junction)

Yes Evaluate response in high transient / high concentration areas and
validate current model and post-processing approach. Propose further
models with more variables

10.4.2iScape Living Lab Station V1

- 95/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

SENSOR INSTALLATION

Guidelines for representativeness of the results are given below:

Height

Between 2,5 and 3,5m. Not reachable by hand.

Reference equipment position

Within <2m and with similar exposure, air flow (both either on wall, or lamppost)

Desirable measurements

Chemical compounds (higher priority above):

NO2

CO, O3

NOx, NO

NMHC

Particulate Matter (higher priority above)

PM 2.5

PM 1.0, PM 10

Climatic conditions (higher priority above)

Temperature and relative humidity

Wind speed and direction

Site Season Reference equipment Duration

Bologna (Italy) Summer YES 1 month

Guildford (England) Autumn YES 2.5 months

Dublin (Ireland) Autumn YES 2.5 months

Bottrop (Germany) Autumn YES 2.5 months

Barcelona (Spain) Spring YES >3 months

7

•

•

•

•

•

•

•

•

•

•

•

Please, refer to the sensor considerations section for general information about the sensors. As well, take into account the following:

Avoid direct exposure to intense sunlight for long periods of time, since this can severely affect the measurements (direct sun or intense transients).

Avoid locations where high temperature or humidity transients are present since the sensor response is affected by these rapid changes.

Avoid locations with low air flow or with direct exposure to air conditioning exhausts.

Important Guidelines

•

•

•

10.4.2iScape Living Lab Station V1

- 96/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

References

Spinelle L., Aleixandre M., Gerboles M. - 2013: Protocol of Evaluation and Calibration of Low-cost Gas Sensors for the Monitoring of Air Pollution.
Joint Research Centre (Report EUR 26112 EN)

Nuria Castell, Franck R. Dauge, Philipp Schneider, Matthias Vogt, Uri Lerner, Barak Fishbain, David Broday, Alena Bartonova - 2018: Can
commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?

Snyder E., Watkins T., Solomon P., Thoma E.,Williams R., Hagler G., Shelow D., Hindin D., Kilaru V., Preuss P. - 2013: The changing paradigm of
air pollution monitoring. Environ. Sci. Technol. 47, 11369–11377

Lewis A., Edwards P. - 2016: Validate personal air-pollution sensors

Spinelle L., Gerboles M., Villani M.G., Aleixandre M., Bonavitacola F. - 2015: Field calibration of a cluster of low-cost available sensors for air quality
monitoring: Part A: Ozone and nitrogen dioxide

Spinelle L., Gerboles M., Villani M.G., Aleixandre M., Bonavitacola F. - 2015: Field calibration of a cluster of low-cost available sensors for air quality
monitoring: Part B: NO, CO and CO2

David H. Hagan, Gabriel Isaacman-VanWertz, Jonathan P. Franklin, Lisa M. M. Wallace, Benjamin D. Kocar, Colette L. Heald, Jesse H. Kroll -
2018: Calibration and assessment of electrochemical air quality sensors by co-location with regulatory-grade instruments

Olalekan A.M.Popoola, Gregor B.Stewart, Mohammed I.Mead, Roderic L.Jones - 2016: Development of a baseline-temperature correction
methodology forelectrochemical sensors and its implications for long-term stability

Sun L., ChunWong K., Wei P., Ye S., Huang H., Yang F.,Westerdahl D., Louie P.K.K., Luk C.W.Y., Ning Z. - 2016. Development and application of a
next generation air sensor network for the Hong Kong Marathon 2015. Air quality monitoring. Sensors 16, 211–229

A. Ripoll , M. Viana, M. Padrosa, X. Querol, A.Minutolo, K.M. Houc, J.M. Barcelo-Ordinas, J. Garcia-Vidal - 2018: Testing the performance of
sensors for ozone pollution monitoring in a citizen science approach

Philip J. D. Peterson, Amrita Aujla, Kirsty H. Grant, Alex G. Brundle, Martin R. Thompson, Josh Vande Hey and Roland J. Leigh - 2017:
Practical Use of Metal Oxide Semiconductor Gas Sensors for Measuring Nitrogen Dioxide and Ozone in Urban Environments, Sensors 2017, 17, 1653

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

10.4.2iScape Living Lab Station V1

- 97/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://www.sciencedirect.com/science/article/pii/S0160412016309989
https://www.sciencedirect.com/science/article/pii/S0160412016309989
https://www.sciencedirect.com/science/article/pii/S0160412016309989
https://www.nature.com/news/validate-personal-air-pollution-sensors-1.20195
https://www.nature.com/news/validate-personal-air-pollution-sensors-1.20195
https://www.sciencedirect.com/science/article/pii/S092540051500355X
https://www.sciencedirect.com/science/article/pii/S092540051500355X
https://www.sciencedirect.com/science/article/pii/S092540051500355X
https://www.sciencedirect.com/science/article/pii/S092540051631070X#
https://www.sciencedirect.com/science/article/pii/S092540051631070X#
https://www.sciencedirect.com/science/article/pii/S092540051631070X#
https://www.atmos-meas-tech.net/11/315/2018/
https://www.atmos-meas-tech.net/11/315/2018/
https://www.atmos-meas-tech.net/11/315/2018/
https://www.sciencedirect.com/science/article/pii/S1352231016308317?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1352231016308317?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1352231016308317?via%3Dihub
http://refhub.elsevier.com/S0160-4120(16)30998-9/rf0140
http://refhub.elsevier.com/S0160-4120(16)30998-9/rf0140
http://refhub.elsevier.com/S0160-4120(16)30998-9/rf0140
https://doi.org/10.1016/j.scitotenv.2018.09.257
https://doi.org/10.1016/j.scitotenv.2018.09.257
https://doi.org/10.1016/j.scitotenv.2018.09.257
http://www.mdpi.com/1424-8220/17/7/1653
http://www.mdpi.com/1424-8220/17/7/1653
http://www.mdpi.com/1424-8220/17/7/1653

10.5 Enclosures
If we want to leave the kit on the outside for a few days you will need to provide it with extra protection. Below you can see
the well-known 3D printed enclosure (for versions without PM sensor):

See the CNC'ed HDPE version:

Previous versions of the Smart Citizen Kit, without the PMS5003 sensor, included a 3D printed enclosure that holds the Data Board and Urban Sensor
Board, as well as the lithium batteries. Different versions are available for the SCK 2.1, either with a CNC'ed version, or 3D printed one. Currently, there is
no mass produced version at SEEED.

A note about the enclosures

10.5Enclosures

- 98/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-enclosures/tree/master/SmartCitizen%20Outdoor%20Cases%20V2.0-2.1/Milled%20HDPE
https://github.com/fablabbcn/smartcitizen-enclosures/tree/master/SmartCitizen%20Outdoor%20Cases%20V2.0-2.1/3D%20Printed%20Prototype

Or the 3D printed one:

10.5Enclosures

- 99/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Build your own

Visit the Smart Citizen Enclosures repository to download, modify, or add your own!

Want to contribute?

Keep in mind that casing is designed for short outdoor deployments. If you want a case for long exhibitions abroad, we will soon have a much more
rugged enclosure ready! Also, feel free to explore all our enclosures repository for this and other versions of our hardware.

Warning

10.5Enclosures

- 100/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-enclosures
https://github.com/fablabbcn/smartcitizen-enclosures

First, you will need the two 3D printed clips. You can download the STL file and print them easily on any RepRap or similar FDM printer. If
you don't know how to find a 3D printer, you can look for your nearest Fab Lab or use 3D Hubs.

1.Use scissors to cut an empty plastic bottle at about 12 cm from the top

2.Use the rubber band to fix it using the bottle cap

Step by step

10.5Enclosures

- 101/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-enclosures/blob/master/SmartCitizen%20DIY%20Clips%20V2.0-2.1/3D%20Print%20Clips.stl
https://www.fablabs.io/labs
https://www.3dhubs.com/3dprint

3.Place the Kit inside and use the rubber band to hold it

10.5Enclosures

- 102/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

4.You have now a simple enclosure to use your Kit outdoors for short measurement periods!

You can now install the sensor outdoors!

10.5Enclosures

- 103/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.5Enclosures

- 104/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.6 Firmware
The firmware is OOP and is entirely written in C++. Both processors the core ARM MCU and the ESP8266 WIFI are
developed as part of the same framework integrating seemingly by using a set of bridge libraries that provide a unifies the
RPC architecture.

Firmware updates are done via the micro USB port using the Platform IO software available for Linux, Mac and Windows.

The first version of the software was initially developed for the Making Sense project under European Community’s H2020 Programme under Grant
Agreement No. 688620.

The current version has been funded by the iSCAPE project project under European Community’s H2020 Programme under Grant Agreement No. 689954.

A note about versions

10.6Firmware

- 105/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://making-sense.eu/
https://cordis.europa.eu/project/rcn/199877/en
https://www.iscapeproject.eu/
https://cordis.europa.eu/project/rcn/202639/en

10.6.1 Architecture

Core Microcontroller

Name Functions

Pins Definition for the MCU pinout

Sensors Definition for all the sensors supported

Sensors Absracts the sensors on a common interface

SckBase Manages the core operations: power, connectivity, peripherials

SckAux Manages the sensors connected on the AUX connector

SckUrban Manages the sensors on the Urban Sensor Board

SckCharger Manages the battery charging process

SckButton Manages users button interaction actions

SckLed Manages light status for user feedback

Commands Library to absracts the core features on to a simple shell interface

ReadLight Manages configuration over light

ReadSound Manages configuration over sound

10.6.1Architecture

- 106/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

DEPENDENCIES

Adafruit INA219 Library

Adafruit MPL3115A2 Library

Adafruit SHT31 Library

Arduino Json Library

Arduino Low Power@ Library

ArduinoZero PMUX Report Library

DS2482 Library

FlashStorage Library

FlashStorage

MCP342X Library

RadioHead Library

RTCZero Library

SdFat Library

SmartSmart Citizen Kit Gases Pro Board Library

SparkFun BQ27441 Arduino Library

SparkFun MAX3010x Library

SPIFlash Library

U8g2 Library

WiFi Module

Dependencies

Time Library

ArduinoJson Library

RemoteDebug Library

RemoteDebug Library

RadioHead Library

RadioHead Library

PubSubclient Library

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Name Functions

SckESP Runs all the Wi-Fi networking related functions

•

•

•

•

•

•

•

10.6.1Architecture

- 107/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Shared

10.6.2 Data management

The board is capable of storing the recorded data offline on its internal dedicated flash memory of 8MB and later publish
this over Wi-Fi connectivity provided by an Espressif ESP8266. Data is published using MQTT messages to the Smart
Citizen Platform. NTP is used for syncing the built-in RTC. For long term offline storage, the board provides a standard
microSD socket where card in the orders of GB can be employed. That ensures extended periods of data in the order of
decades can be stored.

Configuration

The board firmware is fully customizable without requiring any changes to the core software. That includes enabling or
disabling sensors, the sampling frequency of the sensors or the operation mode. There different configuration options via
the Serial Shell available when the board is connected over USB.

10.6.3 Shell

The firmware provides a comprehensive command shell over USB to manage all the kits functionalities for advanced users.

Use any Serial console as screen , platformio device monitor , or the serial monitor on the Arduino IDE

10.6.4 Storage

Readings files YYYY-MM-DD.CSV

These files are generated and updated by the kit in a daily manner. When a SD is detected the SCK will automatically save
the sensors into it.

Name Functions

Config Provides a shared configuration between the two MCUs

Detecting: AlphaDelta 1A... found, Enabling AlphaDelta 1A
Detecting: AlphaDelta 1W... found, already enabled!!!
Detecting: AlphaDelta 2A... found, already enabled!!!
Detecting: AlphaDelta 2W... found, already enabled!!!
Detecting: AlphaDelta 3A... found, already enabled!!!
Detecting: AlphaDelta 3W... found, already enabled!!!
Detecting: AlphaDelta Temperature... found, already enabled!!!
Detecting: AlphaDelta Humidity... found, already enabled!!!
Detecting: Groove ADC... nothing!
Detecting: INA219 Bus voltage... nothing!
Detecting: INA219 Shunt voltage... nothing!
Detecting: INA219 Current... nothing!
Detecting: INA219 Load voltage... nothing!
Detecting: DS18B20 Water temperature... nothing!
Detecting: Atlas PH... nothing!
Detecting: Atlas Conductivity... nothing!
Detecting: Atlas Specific gravity... nothing!
Detecting: Atlas Dissolved Oxygen... nothing!
Detecting: Atlas DO Saturation... nothing!
Detecting: Groove OLED... nothing!

Have a look at the guide for different platforms here

Info

10.6.2Data management

- 108/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

The SCK creates an additional CSV file once there is a hardware reset. A reset takes place every night at 3-4am with the
purpose to avoid data loss because a software problem (i.e. blocked software). The SCK then stores the data in a file with a
sequential name, and does so by changing the filename to YYYY-MM-DD.01, .02... depending on the amount of resets it
sees during a certain day. The latest data is always in the file with .CSV extension. An example of a day with two resets (ad
hoc and the programmed one):

The user can safely change the extension of these files back to .CSV and concatenate them:

Debug log file DEBUG.txt

The debug file is generated and updated by the kit, only if the debug mode is enabled on the configuration.

When the debug mode is enabled the verbosity level of this file is defined by the outlevel (normal, verbose or silent).

10.6.5 Source files

Download

Check the source code

YYYY-MM-DD.01 -> first reset
YYYY-MM-DD.02 -> second reset
YYYY-MM-DD.CSV -> latest file

YYYY-MM-DD.01 -> YYYY-MM-DD_01.CSV
YYYY-MM-DD.02 -> YYYY-MM-DD_02.CSV
YYYY-MM-DD.CSV -> YYYY-MM-DD.CSV

If there is a problem with the device, sometimes it can be that the SD card contains many files for a single day. These resets might go unnoticed, and the
SD card files can be a way of detecting an issue.

Warning

10.6.5Source files

- 109/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-kit-21/archive/master.zip
https://github.com/fablabbcn/smartcitizen-kit-21

10.7 Gases Pro Sensor Board
The Gases Sensor Board is a custom, ultra-low noise, high-performance, low power, digital output driver for 3 Alphasense
Ltd. Electrochemical Series B Gas Sensors specifically designed for the project from the ground up.

Check the source code

10.7.1 Sensor measurements

Measurement Units Sensor

Carbon Monoxide ppm Alphasense CO-B4

Nitrogen Dioxide ppb Alphasense NO2-B43F

Ozone ppb Alphasense OX-B431

10.7Gases Pro Sensor Board

- 110/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-kit-gases-pro-board

10.7.2 Sensors selection

The following characteristics have been considered for the sensor choice

The driver's board designed includes a temperature and humidity sensor for calibrating the temperature dependence of
the sensing subsystem.

Same technology as the A4 series but more robust when exposed to outdoor environments 24/7.

Designed for fixed site air quality networks which demand longer term reliability.

Manufacturers provide the baseline resistance calibration values per sensor allowing corrections to be easily applied.

Low power consumption

The Alphasense EC Sensors were selected to provide a higher linearity, repeatability and resolution than the SGX MICS MO
Gas Sensors found on the Urban Sensor Board.

The selection of the sensors was based on the wide variety of literature available on them. Both Penza and EuNetAir
Consortium (2014) and Mead et al. (2013) test the NO2A1-A3 against reference instruments, in the laboratory as well as in
the field, with well-correlated results. The former concluded that the Data Quality Objective for "indicative measurements"
(European Parliament and Council of the European Union, 2008) is fulfilled, and the latter report sensitivity in the low ppb
region with high linearity. Spinelle et al. tested the Alphasense NO2B4 and O3B4 in a field experiment, with various
calibration approaches. Performance evaluation of the same sensors was performed later including a test on a wide range
of performance parameters (e.g. response time, calibration function, repeatability, drift, hysteresis effect, and matrix effect)
(Spinelle et al. 2017). The experiment found a strong correlation with reference instruments (R > 0.9) and identified some
cases with significant hysteresis effect related to humidity. In chamber conditions, the performances of the Alphasense CO-
B4 was found to be excellent, with the R values being greater than 0.9 (Castell et al. 2017) (Mead et al. 2013) (Sun et al.
2016). Two field studies reported moderate to excellent R values (0.53--0.97) for the CO-B4 sensor (Castell et al. 2017)
(Mead et al. 2013). Finally, some calibration approaches as detailed in Popoola et al. (2016) and Hagan et al. (2018) are
used in the post-processing stage as a basis for pollution concentration calculations.

10.7.3 Design

Each of the three drivers for Alphasense Ltd. Series B Sensors is built around the same design. They include a three stage
adjustable amplifier design for the working electrode and and another simetrical design for the auxiliary electrode. Both
signals are then feed to a high accuracy delta-sigma A/D converter with differential inputs 18 bits of resolution. All the
parameters are digitally adjustable via I2C from the Data Board. Each board also include a unique identifier chip allowing
the firmware on the Data Board to identify the board and apply the corresponding calibration values and a humidity and
temperature sensor.

•

•

•

•

•

2

2

2

Visit the source files section to download the complete schematics.

Info

10.7.2Sensors selection

- 111/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.7.3Design

- 112/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.7.4 Setup

The board is connected to the Data Board using the AUX connector. Before, the Alphasense sensors need to be in place
and properly registered using the board id. The board will be autodetected by the main Firmware running on the Data Board.
Multiple sensor board can be daisy-chained as seen on the image.

10.7.5 Source files

Download

Check the source code

ALPHASENSE NO2-B43F Technical Datasheet

http://www.alphasense.com/WEB1213/wp-content/uploads/2017/07/NO B43F.pdf

ALPHASENSE OX-B431 Technical Datasheet

http://www.alphasense.com/WEB1213/wp-content/uploads/2017/07/OX-B431.pdf

ALPHASENSE CO-B4 B Technical Datasheet

http://www.alphasense.com/WEB1213/wp-content/uploads/2015/04/COB41.pdf

This board is currently being evaluated under the iScape Project and the results will be public soon!

Validation

1.

2

2.

3.

10.7.4Setup

- 113/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-kit-gases-pro-board/archive/master.zip
https://github.com/fablabbcn/smartcitizen-kit-gases-pro-board
http://www.alphasense.com/WEB1213/wp-content/uploads/2017/07/NO~2~B43F.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2017/07/NO~2~B43F.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2017/07/OX-B431.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2015/04/COB41.pdf

10.8 Noise Sensor Implementation

10.8.1 Firmware

Audio I2S Library

A custom library for audio analysis.

Audio I2S Base library, intented to be generic purpose audio analysis library for an I2S Microphone on the SAMD21 with:

FFT Analysis

FIR Analysis

Custom window selection

Custom weighting function selection

Custom buffer size and custom fft bin size (in case of FFT analyser)

Custom equalisation

Octave auto generation of .h files for coefficients and so on

Smart Citizen Firmware

Smart Citizen Firmware Firmware implementation in the SmartCitizen Kit 2.0 and 2.1, with a better usage of memory and
SCK related functionalities:

FFT analysis

Selection of A or C weighting through LUT

Two user cases:

General audio analysis with fixed buffer size and fixed FFT bins size (fs = 44,1kHz)

10.8.2 Source files

Download

Check the source code

Work in progress

•

•

•

•

•

•

•

•

•

•

•

10.8Noise Sensor Implementation

- 114/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/oscgonfer/AudioI2S
https://github.com/fablabbcn/smartcitizen-kit-21
https://github.com/fablabbcn/smartcitizen-kit-audio/archive/master.zip
https://github.com/fablabbcn/smartcitizen-kit-audio

10.9 PM Sensor Board
The PM Sensor Board is based around Plantower PMS 5003 a digital particle concentration sensor that uses the Laser
Scattering principle to obtain the number of suspended particles in the air. This includes a custom designed PCB with an
MCU to provide I2C connectivity with the Data Board.

Check the source code

10.9.1 Sensor measurements

1

Measurement Units Sensor

PM 1 µg/m3 Plantower PMS5003 Dual System

PM 2.5 µg/m3 Plantower PMS5003 Dual System

PM 10 µg/m3 Plantower PMS5003 Dual System

10.9PM Sensor Board

- 115/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-kit-pm-board

10.9.2 Sensors selection

The following characteristics have been considered for the sensor choice:

Provides PM 2.5 and PM 10 measurements in ug/m³

Minimal distinguishable particle diameter of 0.3 am

No need for external ADC or linearization circuits. The sensor includes an internal MCU capable of dealing with all the
light emitting and sensing processing. All the communication is done using the I2C protocol. A dedicated driver has been
designed for this.

Ultra Low Cost when compared to other commercial solutions with similar performance

Low Power

The selection is based on the academic references selected above. For a complete Low-Cost Sensors Evaluation see
recommendations for application and the subsequent publication (Rai et al. 2017).

10.9.3 Design

The PM Sensor Board runs a dedicated ARM M0+ 32-bits, the same as the Data Board to provide a unified hardware
architecture. The board includes an higly efficient step up to provide 5V to drive the PM sensors and a disable/enable circuit
to turn off the sensor by software.

•

•

•

•

•

Visit the source files section to download the complete schematics.

Info

10.9.2Sensors selection

- 116/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Pinout

10.9.3Design

- 117/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

SERCOM DISTRIBUTION

10.9.4 Setup

The board is connected to the Data Board using the AUX connector. Before, the Plantower PMS sensors need to be
connected. The board will autodetect the PMS sensors and present them seamlessly to the main Firmware running on the
Data Board. Multiple sensor board can be daisy-chained as seen on the image.

10.9.4Setup

- 118/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.9.4Setup

- 119/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.9.5 Extra sensors

Dallas OneWire support

See datasheet

Support for rugged version of DS18B20 was added in this commit, the sensor is autodetected on boot when connected to
the PM board GPIO Grove port.

10.9.6 Source files

Download

Check the source code

PLANTOWER PMS5003 Technical Datasheet https://aqicn.org/air/view/sensor/spec/pms5003.pdf 1.

10.9.5Extra sensors

- 120/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
https://github.com/fablabbcn/smartcitizen-kit-20/commit/86bb664470cc9d632058f7db17443b5cfc252d39
https://github.com/fablabbcn/smartcitizen-kit-pm-board/archive/master.zip
https://github.com/fablabbcn/smartcitizen-kit-pm-board
https://aqicn.org/air/view/sensor/spec/pms5003.pdf

10.10 Soil
This page compiles examples of sensors for soil and water monitoring, developed during the GROW project.

The following research has been funded by the Grow Observatory project under European Community’s H2020 Programme under Grant Agreement No.
690199.

A note about versions

10.10Soil

- 121/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://growobservatory.org
https://growobservatory.org/
https://cordis.europa.eu/project/rcn/203271/en

10.10.1 Moisture Sensor

The Chirp Sensor is a low cost moisture and temperature sensor developed by WeMakeThings: a hackers and engineers
collective based in Vilnius, Lithuania. Their hardware and software are fully open-source, and it can be easily integrated but
also replicated and customized for new projects.

Chirp

The sensor uses capacitive sensing to measure soil's moisture. A 1MHz square wave is output from the chip through a
resistor into a big pad that, together with the surrounding ground plane, it forms a parasitic capacitor. The resistor and the
capacitor create a low pass filter which cut-off frequency changes with changing capacitance. The soil around the sensor
acts as an electrolyte whose dielectric constant changes depending on the amount of moisture in it, so the capacitance of
our makeshift capacitor changes too. The filtered square wave is then fed into a peak detector formed of out a diode and a
capacitor. An ADC measures this voltage in the microcontroller. The sensor also includes a temperature sensor with a
calculated absolute measurement accuracy around 2%.

There are different versions of the Chirp sensor, and for this application we chose the Chirp I2C sensor. The sensor was
integrated on to the SCK's firmware, and it is automatically recognized by the board once it is plugged into the SCK using
the Aux sensor connector. A Grove 4 pin Female Jumper to Grove will need to be used with the sensor to connect it to the
SCK. The original Chirp sensors come coated with PRF202 - a moisture resistant varnish for electronics, but it is not enough
for actual deployment. For such, one must add additional protection to the whole sensor. We suggest polyester or epoxy
resin. However, you must note that sensitivity of the sensor will decrease depending on how thick the layer you are going to
apply and might need to be recalibrated. We also recommend covering the electronics with heat shrink to fully waterproof
the sensor. Some versions already include a pre-ruggedized sensor, which is a recommended solution for a faster use.

Sensor calibration

The soil moisture sensor can be used for schedule irrigations (i.e. determine when to water the plants); or for calculating soil
water deficit to work out how much water to apply. Depending on the application, the sensor would need to be calibrated in
with different procedures, but as a general guideline, we need to normalise its readings. Without this process, the raw sensor
readings will be meaningless to the user and only some trends could be analysed. This section is a digest of some of these
procedures, and more information is given in the notes below.

In case of irrigation scheduling, it is generally sufficient to simply match the raw readings from each sensor at both 0%
(held in air) and 100% water levels (submerged in water). This is, of course, an approximation and will need some further
analysis from the user to determine when to irrigate. When a more accurate measurement is required, the sensor needs to
be calibrated with the actual soil where it's going to be deployed, since different types of soil will have different capacities. A
valid approach is to prepare different samples of the soil with different levels of saturation, and adapt the sensor readings for
it.

Image Source: Edaphic Scientific

Capacitance probe calibration

The importance of soil moisture sensor calibration

More references

•

•

10.10.1Moisture Sensor

- 122/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://wemakethings.net/chirp/
https://www.daf.qld.gov.au/__data/assets/pdf_file/0018/55170/Capacitance-Probe-Calibration.pdf
https://www.edaphic.com.au/soil-water-compendium/soil-moisture-sensor-calibration/
https://www.edaphic.com.au/soil-water-compendium/soil-moisture-sensor-calibration/
https://www.edaphic.com.au/soil-water-compendium/soil-moisture-sensor-calibration/

If we are not aiming to get a full-fledged sensor reading, we will only need to measure the sensor in dry air and fully submerged in water. For that, we
will use:

A laptop with a serial interface. For instance, the Arduino IDE

Our sensor

A cup filled up with water and a napkin

The sensor can be calibrated using the shell interface. The process is as follows:

Connect your kit to a computer and open the terminal for the SCK. If you use the Arduino IDE, go to Tools > Serial Monitor and select 115200 baud
at the bottom right corner

If you use the IDE type sensor on the top and click Send

Check if the output has something like Soil Moisture Raw (60 sec) after Enabled

If it's Enabled , dry the sensor and type in: read soil moisture raw . Repeat this command 5-10 times until you get an stable output (repeat
command with arrow up)

Put the sensor in a cup of water (until the line). Then read the value again read soil moisture raw several times.

Once you have both values, type in: control moisture cal XXX YYY where XXX and YYY are the dry and wet values that you just measured

Check that the reading is OK by: read soil moisture percent . You should receive an answer in rh%

Now you should see the data online (if in network mode):

Calibrate your sensor

•

•

•

1.

2.

3.

4.

5.

6.

7.

8.

10.10.1Moisture Sensor

- 123/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://www.arduino.cc/en/Main/Software

Sensor validation

Three Chirp sensors were compared to the Parrot Flower Power (now discontinued). The Flower Power can measure several
metrics, such as light, temperature, fertilizer and soil moisture. In this test, we compared the soil moisture readings for three
Flower Parrot sensors, compared to three Chirp sensors. Both sensors show a good behaviour and the values can be
correlated with good R2 scores. The approach for this low-cost sensors, in general, should be more qualitative than
quantitative (analyse the trends rather than the absolute values), since their values appear to differ between sensors, even
when normalised. In the particular case of the Chirp sensor, the sensor seems to be fairly normalised with simply a two
calibration values (water and air) as a first approach.

10.10.2 Tensiometer

Soil Moisture data as the one provided by the Chirp Moisture Sensor is interesting for research, but when it comes to crops
irrigation management, we usually like to know the soil water tension (SWT). That is because Soil Moisture in water is not
directly related to the water plants roots might be able to extract because it is deeply affected by the soil composition. Even
soil irrigation can be inferred from soil moisture when the soil type is known we think a soil tensiometer. Also when it is a
simple solution, it is a useful tool for crops management.

Check the project source code files.

Find out more

Find the full analysis here!

Full analysis here

This version is a WIP but is not fully functional with the SCK 2.1. It is shown here as a showcase of the project's capabilities. Have a look at the forum or
drop us an email to discuss this. Check the source files.

WIP

10.10.2Tensiometer

- 124/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-grow/tree/master/soil-moisture
https://www.parrot.com/
https://github.com/fablabbcn/smartcitizen-iscape-data/raw/master/reports/development/1910_moisture_sensor_analysis.pdf
https://github.com/fablabbcn/smartcitizen-grow/tree/master/soil-water-tension

Watermark Tensionmeter Demo

The design is entirely open source and it is deeply inspired by the work of Reinier Van der Lee from the Vinduino project,
using an already calibrated commercial probe like the Watermark 200SS9. The sensor itself is straightforward and it
consists of two stainless steel screws that work as electrodes cast inside a piece of plaster and covered by a plastic mesh
to prevent erosion. As water is added more electrons can pass between the electrodes of the probe reducing the amount of
resistance between them. By using this range of values, you can determine the amount of water that exists in your soil. To
avoid interferences and degradation of the electrodes the design only applies voltage for a very short time and uses
alternating electric polarities. For the sensor to work, we need a minimal circuit that uses two resistors and two diodes. The
resistors work together with the electrodes to build a voltage divider. We can calculate the resistance value between the
two electrodes by knowing the value of the resistors and the voltage. However to be able to alternate the electric current we
need to duplicate the circuit and add two diodes. In total, we need 4 Pins to be connected to a microcontroller like the
Arduino or the Smart Citizen Kit.

10.10.2Tensiometer

- 125/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://vanderleevineyard.com/vineyard-blog.html

10.11 Urban Sensor Board

10.11.1 What is it?

The Urban Sensor Board is a solution that contains a selection of low-cost sensors for environmental monitoring. Its main
purpose is to serve as a tool for citizen science and awareness activities, and for that reason, metrics such as temperature,
pressure, and humidity, as well as noise levels, ambient light, air quality indicators and PM sensors are included. The Urban
Sensor Board has undergone several modifications throughout its development, and its current version is V2.1:

An iteration with a different set of sensors was developed as part of the iScape Project and is shown in the image below:

10.11Urban Sensor Board

- 126/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://www.iscapeproject.eu/

Check the source code

A major effort has been carried out on this design to improve the accuracy of the data provided. The sensors on the board
include: Air Temperature, Relative Humidity, Noise Levels and Spectrum, Ambient Light and Barometric Pressure. The board
also features a section especially focused on Air Quality including a Particle Matter Sensor, and, in version V2.1, an eCO2
and TVOC sensor. Previously, in version V2.0, a Carbon Monoxide and a Nitrogen Dioxide sensors was included, but due to
the high power consumption and the need of important calibration efforts, these were removed. The sensor density of the
board design offers more than ten different environmental metrics at a very low cost and differentiates the design from other
existing solutions. The following sections describe in detail each of the sensors available.

10.11.1What is it?

- 127/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-kit-21

V2.1 Sensors

V2.0 Sensors

The Urban Sensor Board connect to the Data Board connector named Sensor Board

Board assembly

Measurement Units Sensor

Air Temperature ºC Sensirion SHT-31

Relative Humidity % REL Sensirion SHT-31

Noise Level and Spectrum dBA, dBC, dBZ Invensense ICS-434342

Ambient Light Lux Rohm BH1721FVC

Barometric pressure and AMSL Pa and Meters NXP MPL3115A26

eCO2 and TVOC ppm/ppb AMS CCS811

Particulate Matter PM1/PM2.5/PM10 µg/m3 PMS 5003

10.11.1What is it?

- 128/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.11.2 Metal Oxyde Sensors (all versions)

The metal oxyde sensors section is so extense, that we decided to dedicate a full section to them. Have a look at it here!

10.11.3 Noise Level Sensor (V2.0 onwards)

The noise sensor is based on the INVENSENSE ICS-43432 high-performance, low power, digital output, omnidirectional
MEMS microphone with a bottom port and I2S interface. The sensors are similar to the one found on some high-end
smartphones. It delivers the information directly in a digital format to the MCU where a custom library has been developed
to provide noise data in dB scales A, C and Z. The raw FFT is also accessible to support characterization of specific noise
frequencies. The sensor has been calibrated specifically for the project on an anechoic chamber using standard
microphone calibration procedures.

The following characteristics have been considered for the sensor choice

High 65 dBA SNR with a −26 dB FS Sensitivity

Low Sensitivity Tolerance ±1 dB

Wide Frequency Response from 50Hz to 20kHz

High Acoustic Overload Point 116 dB SPL

Low Power

Measurement Units Sensor

Air Temperature ºC Sensirion SHT-31

Relative Humidity % REL Sensirion SHT-31

Noise Level and Spectrum dBA, dBC, dBZ Invensense ICS-434342

Ambient Light Lux Rohm BH1721FVC

Barometric pressure and AMSL Pa and Meters NXP MPL3115A26

Carbon Monoxide ppm (Periodic Baseline Calibration Required) SGX MICS-4514

Nitrogen Dioxide ppb (Periodic Baseline Calibration Required) SGX MICS-4514

Particulate Matter PM2.5 (external - power req) µg/m3 PMS 5003

More on the MICS working principle and field validation

Read more

More on the AMS CCS811, eCO2 and TVOC

What are normal values?

2

•

•

•

•

•

10.11.2Metal Oxyde Sensors (all versions)

- 129/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.11.4 Relative Humidity and Air Temperature Sensor (V2.0 onwards)

Relative Humidity and Air Temperature Sensor are provided by a SENSIRION SHT31 module.

Check the Noise sensor implementation full documentation

Info

Sensor integration

3

Preliminary tests during the project shown a absolute calibration issues affecting the previously selected sensor, the SENSIRION SHT31. Those we
updated the sensor to the newest SHT 31 with a PTFE layer for protection obtaining better results.

Sensor upgrade

10.11.4Relative Humidity and Air Temperature Sensor (V2.0 onwards)

- 130/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Inside%20the%20Noise%20Sensor

The following characteristics have been considered for the sensor choice

Calibrated, linearized sensor signals in digital, I2C format straight to the MCU where data is provided in degrees Celsius
and Relative Humidity.

Wide measurement range with high resolution. The relative humidity range of 0-100% RH with a 0.03% resolution and a
repeatability of 0.1%, together with a temperature operating range from -40 to +125°C with a temperature resolution of
0.01 ºC and a repeatability of 0.1%.

No need for calibration and long-term stability.

Low power consumption

Commonly found in many commercial weather stations as the Davis Vantage Pro.

10.11.5 Ambient Light Sensor (V1.5 onwards)

The Ambient Light Sensors is based around the ROHM BH1721FVC which uses an LDR10 combined with an ADC and the
corresponding circuit that allows communicating with the device with the I2C protocol.

•

•

•

•

•

Sensor integration

4

10.11.5Ambient Light Sensor (V1.5 onwards)

- 131/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

The following characteristics have been considered for the sensor choice:

No need of external ADC or linearization circuits uses the well-known I2C protocol

Measures ambient light data in a wide range from 1lx to 65528 lx a repeatability of 15% and a resolution of 8 lx.

Possibility to adjust by an I2C command the kind of light that it should measure (visible or infrared).

Low power consumption.

50Hz/60Hz (electric network frequency) light rejection. Filtering the interference of most artificial light sources.

10.11.6 Barometric Pressure (V2.0 onwards)

The Barometric Pressure sensor is based around the NXP MPL3115A2 is a compact, piezoresistive, absolute pressure
sensor with an I2C digital interface.

The following characteristics have been considered for the sensor choice:

Wide operating range of 20 kPa to 110 kPa.

Temperature compensated utilizing an on-chip temperature sensor.

No need for an external ADC or linearization circuits. The pressure and temperature data is fed into an internal high-
resolution ADC to provide fully compensated and digitized outputs for pressure in Pascals and temperature in °C using the
well-known I2C protocol

Barometric pressure is also processed by the MCU as height above mean sea level (AMSL) helping to determine the
location of the device.

Low power consumption.

•

•

•

•

•

Sensor integration

5

•

•

•

•

•

10.11.6Barometric Pressure (V2.0 onwards)

- 132/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.11.7 External PM Sensor (V2.0 onwards)

An external connector on the board supports the connection of a Plantower PMS 5003 or PMS 7003 . The device is a
digital particle concentration sensor that uses the Laser Scattering principle to obtain the number of suspended particles in
the air. The sensor can be fully enabled or disabled in software to save energy when not in use.

The following characteristics have been considered for the sensor choice:

Provides PM 2.5 and PM 10 measurements in ug/m³

Minimal distinguishable particle diameter of 0.3 um

No need for external ADC or linearization circuits. The sensor includes an internal MCU capable of dealing with all the
light emitting and sensing processing. All the communication is done using the I2C protocol. A dedicated driver has been
designed for this.

Ultra Low Cost when compared to other commercial solutions with similar performance

Low Power

Sensor integration

7

•

•

•

•

•

10.11.7External PM Sensor (V2.0 onwards)

- 133/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Sensor integration

10.11.7External PM Sensor (V2.0 onwards)

- 134/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.11.8 Source files

Download

Check the source code

SGX MICS 4514 Technical Datasheet

https://sgx.cdistore.com/datasheets/sgx/0278_Datasheet%20MiCS-4514%20rev%2017.pdf

INVENSENSE 43432 Technical Datasheet

https://www.invensense.com/wp-content/uploads/2015/02/ICS-43432-data-sheet-v1.3.pdf

SENSIRION SHT31 Technical Datasheet

https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/2_Humidity_Sensors/

ROHM BH1730 Technical Datasheet

http://rohmfs.rohm.com/en/products/databook/datasheet/ic/sensor/light/bh1721fvc-e.pdf

NXP MPL3115A2 Technical Datasheet

http://www.nxp.com/docs/en/data-sheet/MPL3115A2.pdf

MAXIM 30105 Technical Datasheet

https://datasheets.maximintegrated.com/en/ds/MAX30105.pdf

PLANTOWER PMS5003 Technical Datasheet https://aqicn.org/air/view/sensor/spec/pms5003.pdf

1.

2.

3.

4.

5.

6.

7.

10.11.8Source files

- 135/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-kit-21/archive/master.zip
https://github.com/fablabbcn/smartcitizen-kit-21
https://sgx.cdistore.com/datasheets/sgx/0278_Datasheet%20MiCS-4514%20rev%2017.pdf
https://www.invensense.com/wp-content/uploads/2015/02/ICS-43432-data-sheet-v1.3.pdf
https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/2_Humidity_Sensors/
http://rohmfs.rohm.com/en/products/databook/datasheet/ic/sensor/light/bh1721fvc-e.pdf
http://www.nxp.com/docs/en/data-sheet/MPL3115A2.pdf
https://datasheets.maximintegrated.com/en/ds/MAX30105.pdf
https://aqicn.org/air/view/sensor/spec/pms5003.pdf

10.12 Water
Having a robust portfolio of the sensor for measuring soil and water characteristics is a need found by many research
communities. In this direction, we include a collection of sensors that despite not being low cost or open source, they are
still affordable and well documented when compared to other commercial solution. From a cost perspective, they are not
aimed at being massively deployed but instead used individually in a specific site for specific needs.

The sensors selected are from Atlas Scientific, a New York-based company that converts devices that were originally
designed to be used by humans into devices that are specifically designed to be used by robots. As already mentioned the
sensors are not entirely open source as the other sensors documented on this section. However, they are modular and
exceptionally well documented by the manufacturer. That includes documentation on how to install, calibrate and integrate
them with additional existing hardware. In this direction, we developed a full library for the SCK to support the sensors via
the Auxiliary sensor connector. We also developed a Python script to simplify the calibration process of the sensors. As the
sensors can be configured in different ways, we do not provide a full step-by-step guide. Instead, we refer to the
documentation on the project's repository.

10.12Water

- 136/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-grow/tree/master/soil-water-probes

The setup is built out of the following main components:

Atlas Scientific Sensor Probe: The physical probe we will insert on to the soil (or water).

Atlas Scientific EZO Circuit: The driver that will read the analog signal coming from the Sensor Probe and turn it into a
meaningful numeric value by applying the different calibration operations.

Whitebox Labs Tentacle T3: The motherboard that puts everything together and hosts up to 3 Atlas Scientific Probes. It
connects to the SCK via the Aux sensor connector. This boards can be chained to support more sensors, but this is not
documented at the moment.

SEEED Grove - 4 pin Female Jumper to Grove 4 pin Conversion

Cable needs to be used to connect the board to the SCK.

Different sensor probes can be selected for different needs. For example the setup shown above is designed for soil
measurements and includes Atlas Scientific temperature, conductivity and PH probes. It also consists of a Chirp Moisture
Sensor as described in the above section. As an additional example the setup in the figure below is designed for water
monitoring on aquaponics systems and includes Atlas Scientific probes for PH, conductivity and dissolved oxygen.

•

•

•

•

•

10.12Water

- 137/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.12Water

- 138/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.12Water

- 139/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.12.1 Metrics and Sensors

ID Name Description Unit Measurement Description

10 Battery Custom Circuit % battery The SCK remaining battery level in percentage.

13 HPP828E031 Humidity % humidity Relative humidity is a measure of the amount of moisture
in the air relative to the total amount of moisture the air
can hold. For instance

12 HPP828E031 Temperature ºC air temperature Air temperature is a measure of how hot or cold the air is.
It is the most commonly measured weather parameter. Air
temperature is dependent on the amount and strength of
the sunlight hitting the earth

14 BH1730FVC Digital Ambient Light
Sensor

Lux light Lux is a measure of how much light is spread over a
given area. A full moon clear night is around 1 lux

15 MiCS-4514 NO2 kOhm/
ppm

no2 Nitrogen dioxide is a toxic gas. It is a pollutant in some
urban areas due the excess air required for complete
combustion of fuels introduces nitrogen into the
combustion of internal combustion engines (cars

16 MiCS-4514 CO kOhm/
ppm

co Carbon monoxide is a colorless

29 MEMS Mic MEMS microphone with
envelope follower sound
pressure sensor (noise)

dBC noise dB's measure sound pressure difference between the
average local pressure and the pressure in the sound
wave. A quiet library is below 40dB

42 DS18B20 Submergible Water
Temperature sensor

°C water
temperature

Water temperature is a measure of how hot or cold the
water is.

46 AS EZO Specific
Gravity

Atlas Scientific EZO™
Specific Gravity

SG specific gravity The density of a substance to the density of a reference
substance.

49 AS EZO Oxygen
Saturation

Atlas Scientific EZO™
Oxygen Saturation

% oxygen
saturation

Relative measure of the concentration of oxygen that is
dissolved in Water

43 AS EZO PH Atlas Scientific EZO™ pH PH pH pH is a numeric scale used to specify the acidity or
basicity of an aqueous solution.

48 AS EZO
Dissolved
Oxygen

Atlas Scientific EZO™
Dissolved Oxygen

mg/L dissolved
oxygen

Absolute measure of the concentration of oxygen that is
dissolved in Water

45 AS EZO
Electrical
Conductivity

Atlas Scientific EZO™
Electrical Conductivity

µS/cm electrical
conductivity

How strongly a given material opposes the flow of
electric current.

10.12.1Metrics and Sensors

- 140/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.12.2 Hardware

Atlas Scientific Carrier board board

We recommend using Whitebox Labs Tentacle T3 that hosts up to 3 Atlas Scientific Probes. It connects to the SCK via the
Aux sensor connector. This boards can be chained to support more sensors, but this is not documented at the moment.
However, before it existed we designed a custom board in collaboration in with Aquapiooners.

10.12.2Hardware

- 141/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://www.whiteboxes.ch/shop/tentacle-t3-for-raspberry-pi/
https://github.com/fablabbcn/monitoring-kit-hardware
http://aquapioneers.io

Enclosures

There is not an standard enclosure and in many cases a simple IP65 box could work. However, in collaboration in with
Aquapiooners we designed the custom enclosure below.

10.12.2Hardware

- 142/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://aquapioneers.io
https://github.com/fablabbcn/monitoring-kit-hardware

The enclosure of the monitoring board and the smart citizen have been designed on Onshape, you can either download the
STL files or copy the project to your onshape account and modify them as you wish : The Onshape documents of the
monitoring case

10.12.2Hardware

- 143/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://cad.onshape.com/documents/50f1112a541136a65bec4a67/w/db735112a72871fb7c20053e/e/57e22425fb47d5e8030621de
https://cad.onshape.com/documents/50f1112a541136a65bec4a67/w/db735112a72871fb7c20053e/e/57e22425fb47d5e8030621de

We have also designed a probe holder if you want to hold your probes on the side of you fish tank : The Onshape document
of the probes holder

10.12.2Hardware

- 144/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://cad.onshape.com/documents/8977ef824f45a910c0b8beaa/w/7ac458735dae629f0a5a73cd/e/be59d435418832bfe5f78afb
https://cad.onshape.com/documents/8977ef824f45a910c0b8beaa/w/7ac458735dae629f0a5a73cd/e/be59d435418832bfe5f78afb

10.12.2Hardware

- 145/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.12.3 Firmware and setup

The Smart Citizen firmware has the support for the monitoring board built-in. To enable the sensors you just need to plug
you board to the Smart Citizen kit aux port and reboot the Smart Citizen Kit and the sensors will be handled by the board.
However, you will need to register your device again using the Advanced Kit Selection. At the moment the closest Kit
Blueprint will be #22 BioPV Kit . You can request in the forum for a custom blueprint with the specific sensors you are using.

10.12.4 How to calibrate the sensors

In order to calibrate the sensors you will need to use the USB Shell.

The pH sensor

format of the command line

The pH value at current temperature can be found on the reference table on the calibration solution bottle. If the current
temperature is not on it, use the closest value.

THE 3 POINTS CALIBRATION

First start a serial communication with the Smart Citizen Kit with screen or pio device monitor or even the serial monitor
of the Arduino IDE.

control atlas ph com,[point],[pH value at current temperature]

10.12.3Firmware and setup

- 146/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://forum.smartcitizen.me

Order of the calibration :

mid point

low point

high point

important ! : Always calibrate the mid point first because it calibration erase all the previous calibration done.

Always clean the probe with distilled water between each calibration

The mid point calibration : Put the sensor in the pH 7 calibration solution and run the command below :

example at 30°C :

The low point calibration : Put the sensor in the pH 4 calibration solution and run the command below :

The high point calibration : Put the sensor in the pH 10 calibration solution and run the command below :

Note : (not tested) If your calibration solutions are not 4, 7 and 10, you can still use them and replace [value of pH at
current temperature] by your values.

The EC Sensor

THE 2 POINTS CALIBRATION

Order of the calibration :

dry point

high point

The dry point calibration : Check that the sensor is dry and run the command below :

The high point calibration : Put the sensor in the high point calibration solution (12,880 µS/cm) and run the command
below :

example at 30°C :

Important ! : Do not forget the , between the hundreds and the thousands or else the calibration will not occur !

1.

2.

3.

•

control atlas ph com cal,mid,[value of pH at current temperature]

control atlas ph com cal,mid,6.99

•

control atlas ph com cal,low,[value of pH at current temperature]

•

control atlas ph com cal,high,[value of pH at current temperature]

1.

2.

3.

control atlas ec com cal,dry

•

control atlas ec com cal,high,[value of EC at current temperature]

control atlas ec set cal,high,14,120

10.12.4How to calibrate the sensors

- 147/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Note : (not tested) If your calibration solution is not 12880 µS/cm, you can use another one and replace [value of pH at
current temperature] by your value of electroconducivity.

10.12.5 The DO Sensor

The 2 points calibration

Order of the calibration

dry point

0 mg/L point (optional)

The dry point calibration : Check that the sensor is dry and run the command below :

The 0mg/L point calibration : Put the sensor in the 0mg/L calibration solution and run the command below :

1.

2.

3.

control atlas do com cal

•

control atlas do com cal,0

10.12.5The DO Sensor

- 148/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.12.6 Deployment

10.12.6Deployment

- 149/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.12.6Deployment

- 150/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

10.12.6Deployment

- 151/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

11. Sensors

11.0.1 eCO2 and TVOC sensor

The AMS CCS811 is a Metal Oxide Sensor with I2C connectivity which is capable of measuring a volatile organic
compounds (VOCs for short). This sensor was introduced in the SCK2.1, in replacement of the SGX MICS4514 from previous
designs. As mentioned in other parts of the documentation, this decission was mainly due to the lower power consumption
of the CCS811 and the easy implementation of reading processing provided by the manufacturer.

Measurements

eCO2 and eTVOC are two related measurements. The first stands for equivalent CO2, and it's an indication of the
concentration of CO2 that would cause the same level of radiative forcing as a given type and concentration of greenhouse
gas. The eCO2 measurement is therefore a derived measurement from the reactions all these substances in the air with the
metal oxide substrate in the sensor. eCO2 bottomline starts at 400ppm (current background CO2, sadly) and can reach
several thousands.

On the other hand, eTVOC stands for equivalent total volatile organic compounds and is a measurement of the total amount
of any emitted gases coming from toxins and chemicals. They come from a wide range of everyday items including paints
and varnishes, wax and cosmetics, cleaning and hobby products, and even cooking. When you have an enclosed space like
a home or office, these emitted gases accumulate and pollute our fresh air.

GLOBAL WARMING POTENTIAL

To understand the eCO2 readings, we need to know what is the Global Warming Potential (GWP for short). GWP is an
estimate of how much a given greenhouse gas contributes to Earth’s radiative forcing.

We know that CO2 is one of the major contributors to global warming, but there are others (and that are much worse). For
example: CO2 has a value of 1 GWP, whereas methane has a GWP of 72 over 20 years, but a lower GWP of 25 over 100
years. This is because it is very potent in the short-term but then breaks down to CO2 and water in the atmosphere, meaning
that the longer the period you consider it over, the more similar its effect is to that of CO2 alone. This means that 1ppm of
CH4 is much more worrying for the global warming of the planet than 1ppm CO2 in the short term, because it can produce a
higher increment of the atmosphere temperature. All this is at the same time interesting and worrying, because many
products used for painting, solvents, varnish, refrigeration, and more contain pollutants with high GWP. A very interesting
article can be found here.

Working principle

As any metal oxide sensor, the CCS811 measures the resistance of a sensitive layer, exposed to ambient air. This layer is
heated up with a heater element (a resistance) up to several hundred ºC, and some oxidation reactions take place on it. The
characteristics of the sensitive element vary from sensor to sensor, and with time, depending as well on the exposure to
different chemical components and ambient conditions. For this reason an individual sensor charactersition is very tricky,
and relative measurements are used, using an internal processing that monitors the baseline resistance of the sensor (i.e.,
the resistance of the sensitive layer when exposed to clean air).

No. Despite the name, the sensor does not measure CO2. See below for a detailed description of the sensor measurements.

Does it measure CO2?

11.Sensors

- 152/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://en.wikipedia.org/wiki/Global_warming_potential
http://www.darkoptimism.org/2008/09/03/climate-science-translation-guide/

The sensor generally targets pollutants that can get oxidised in the sensor substrate. This oxidation process modifies the
resistance of the sensor, and the more oxidation reactions we have the lower the resistance is. The concept of baseline
resistance in this sense can be confusing, but basically can be explained as: the higher resistance, the cleaner the
environment.

Temperature and humidity are used internally to compensate the readings, as the sensor compares it’s actual resistance
with the clean air one (baseline), and inputs the ambient conditions in the correction.

Sensor considerations

Like any sensor, the CCS811 has some limitations. As mentioned above, the sensitive layer will decrease it's resistance
when in presence of VOCs, but other pollutants can have the opposite effect on it. For instance, Ozone (O3) will increase the
sensor's resistance, and it could be seen as clean air by the sensor. This could explain why in some outdoor environments
(generally with traffic and high levels of sun radiation), the sensor can present an unstable behaviour.

Additionally, humidity is known to affect the sensor resistance. The internal humidity correction can limit this effect up to a
certain extent, but a perfect correction is not possible.

We also recommend setting the sensor in a stable environment, in which temperature and relative humidity changes are not
abrupt. When moving the sensor to another location, beware that any high resistance could be seen as the new baseline
resistance, and this value might not apply to the previous environment, should you put the sensor back into it's original
location.

Finally, although the sensor is considered to be an indoor sensor, it can be placed outdoor, but keeping in mind, that the
environment will be very different and that the sensor might behave in unexpected ways.

EARLY-LIFE (BURN-IN)

The CCS811 performance in terms of resistance levels and sensitivities will change during early life. The change in
resistance is greatest over the first 48 hours of operation, although this process can last up to 5 days. CCS811 controls the
burn-in period allowing eCO2 and eTVOC readings to be used from first power-on after 60 minutes of operation.

CONDITIONING PERIOD (RUN-IN)

After early-life (Burn-In) the conditioning or run-in period is the time required to achieve good sensor stability before
measuring VOCs after long idle period. The sensor will need to run for 20 minutes, before accurate readings are generated.

The sensor keeps track of the baseline resistance even after a factory reset. Currently, there is no method to reset the baseline resistance in the firmware,
but it will soonly be introduced. When changing locations, a baseline resistance reset should be performed.

Resetting the baseline resistance

Have a read to the Datasheet Or some other Application notes

Sources

11.0.1eCO2 and TVOC sensor

- 153/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://ams.com/documents/20143/36005/CCS811_DS000459_7-00.pdf/3cfdaea5-b602-fe28-1a14-18776b61a35a
https://ams.com/documents/20143/36005/CCS811_AN000370_2-00.pdf/ee95d147-0bca-dbbb-51a6-c6fd32ce4b28

11.1 Inside the Electrochemical Sensors

11.1.1 Sensor working principle

The electrochemical cells used are toxic gas sensors from alphasense that operate in an amperometric mode. That is, they
generate a current that is linearly proportional to the fractional volume of the toxic gas in the environment:

Image Source: Alphasense Ltd.

These electrochemical sensors are comprised of four electrodes:

Working electrode

Auxiliary electrode

Counter electrode

Reference electrode

The working electrode is where the oxidation (CO, H2S, NO, SO2) or reduction (NO , Cl2) of the toxic gas to be measured
takes place. This electrode is exposed to the outside air and directly exposed to all gases in the air including the gas to be
measured. This electrode may as well be poisoned if it is exposed to certain gases that either adsorb onto the catalyst
(such as acetylene onto CO sensors), or react, creating by-products which inhibit the catalyst (NO or aromatics onto H2S
sensors).

The auxiliary electrode is an electrode of the same characteristics to those of the working electrode, but it is buried inside
an electrolite and, hence, it is not in contact with the target gas. Since it is isolated from external conditions that could
affect the working electrode, it serves as a reference to the measurements provided by the latter.

The counter electrode balances the reaction of the working electrode – if the working electrode oxidises the gas, then the
counter electrode must reduce some other molecule to generate an equivalent current, in the opposite sense. For example,
where carbon monoxide will be oxidised on the working electrode, oxygen will be reduced on the counter electrode.

•

•

•

•

2

2

11.1Inside the Electrochemical Sensors

- 154/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

The reference electrode anchors the working electrode potential to ensure that it is always working in the right conditions.
It is important that the reference electrode has a stable potential, keeping the working electrode at the right
electrochemical potential to maintain a constant sensitivity, good linearity and minimum sensitivity to interfering gases.

Therefore, while the sensor response is exposed to the target gas, it creates a current flowing from the working to the
counter electrode or viceversa (depending on the oxidative or reductive nature of the target gas). This relationship can be
characterised and follows a curve such as:

Image source: Alphasense Ltd.

When operating in the so called transport limited current plateau the measured current (IL) should be linearly dependent on
the concentration or fractional volume of the toxic gas (CT) in the external environment:

I_L = k C_T

where k is a proportionality constant. This constant is provided by the manufacturer as Sensitivity and is explained below.

Manufacturer data

The manufacturer provides the calibration data in laboratory conditions for each of the electrochemical cells used. This
data is listed below: - Sensor sensitivity: the sensor response in nA per each ppm of target pollutant in nominal conditions -
Electrode zero current: the electrode reading in nA to zero air (pure air at 25degC). This is provided for both, working and
auxiliary electrodes, in the case of 4-electrode sensors - Sensor response (t_{90}) - Sensor range

The manufacturer suggests using the following equation in order to determine the sensor's corrected reading in the
presence of target gas:

Concentration \ [ppm] = {I_{WE}-n(I_{AE}) \ [nA] \over Sensitivity \ [nA/ ppm]}

Where:

I_{WE} (nA) = K (nA/mV) V_{WE} (mV)
I_{AE} (nA) = K (nA/mV) V_{AE} (mV)

A potentiostat circuit is built in order to ensure that the counter electrode is provided with as much current as it needs, also maintaining the working
electrode at a fixed potential, irrespective of how hard it is working.

Electronics design considerations

11.1.1Sensor working principle

- 155/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Where: * I_{PCBWE} and I_{PCBAE} are the electronic offsets for each electrode * n = {I_{0WE} \over I_{0AE}}, the ratio
between alphasense's zero currents * k is a constant convertion factor (~ 6.36 in the case of the SCK Gas Pro Board
electronics)

With regards to sensor ranges, the following are available from the manufacture:

NO : 20ppm

O3 + NO : 20ppm both

CO: 1000ppm

Finally, toxic gas sensors' sensitivity will drift downwards with time, typically 0.5% to 2% per month, depending on the
sensor type, relative humidity and gas concentration/temperature conditions.

Reduction vs Oxidation Electrochemical Sensor

As mentioned above, the counter electrode is meant to balance the reaction of the working electrode. This determines the
current direction within the board: whether it goes from the working electrode to the counter electrode or viceversa.

Oxidation sensors, such as CO, provoke a positive current out of the working electrode and the larger the amount of CO
present, the larger (positive) is this current.

Reduction sensors, such as NO , provoke a negative current, i.e: going into the sensor and the larger the amount of NO
present, the larger (negative) is this current

As an example, this is reflected in the different signs of the sensor sensitivity:

NO2-B43F Average Batch Sensitivity: -347nA/ppm

CO-B4F Average Batch Sensitivity: 588nA/ppm

Although this is in principle directly related with the sensor itself, there are further signal transformations to be taken into
account. For instance, the currents seen in the electrodes, if comparing between CO and NO , should be different in sign,
however, for both, CO and NO sensors, we see positive currents which grow positively with higher CO and NO
concentrations:

• 2

• 2

•

•

• 2 2

•

•

2

2 2

11.1.1Sensor working principle

- 156/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://www.alphasense.com/WEB1213/wp-content/uploads/2018/12/NO2B43F.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2018/12/NO2B43F.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2018/12/NO2B43F.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2018/12/OXB431.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2018/12/OXB431.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2018/12/OXB431.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2015/04/COB41.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2015/04/COB41.pdf

Hence, the sensor senstivity provided by the manufacturer should be considered in absolute terms (abs(Sensitvity)) for the
calculations to yield always positive results in pollutant fractional volumes.

11.1.2 Sensor Calibration

The model described in the following section is based on the findings of . This study uses alphasense's 3-electrode
sensors, and here it is further extended to the case of 4-electrode sensors, taking into account the auxiliary electrode.

Baseline correction based on temperature

The mentioned work described the correction method based on temperature using a baseline correction algorithm which is
described in . This is summarised below:

For each day of gas working electrode readings, and for each point in the time series (i), the minimum value of the working
electrode value that is contained within the interval (i-\delta < i < i+\delta) is determined, where \delta is an interval
ranging from 0 to a day length. The outcome of this procedure is an array where each column is a vector of minimum
working electrode values calculated for each \delta_i value (this is, from now on, baseline_{\delta_i}).

The correlation between each baseline_{\delta_i} and the temperature is calculated. Relative humidity is not considered in
this study since it's generaly inversely correlated with the temperature.

The correlation coefficients for each correlation (R^2_{\delta_i}) are calculated. The maximum R^2 whith this array is
obtained.

For the equation at which the maximum R^2_{\delta_i} is found, the temperature reading is used to calculate the
corrected baseline.

The corrected baseline is substracted from the actual working electrode reading

The final pollutant concentration is calculated based on the corrected working electrode reading and the manufacturer's
data.

The readings are treated in a day-to-day basis in order to avoid non-stationary temperature trends over several days, but still
to account for temperature variations within each day.

1

2

1.

2.

3.

4.

5.

6.

11.1.2Sensor Calibration

- 157/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Finally, a background pollutant concentration is assumed from which is also summarised below for each pollutant. This
background concentration is added to the final result.

Background concentrations. Source

APPLICATION ON 4-ELECTRODE SENSORS

This algorithm can be used to correct temperature effects on the working electrode based on the temperature in 4-
electrode sensors. The results are discussed below for tests validation campaigns performed within the iScape project.
These tests are summarized below:

University of Bologna: data collected from 23/January to 13/February. The measured pollutants with reference
equipments were CO, NO , NO, NOx and O3. Two prototype Smart Citizen Stations were deployed in two different sites,
with two Smart Citizen Kits.

University College Dublin: data collected from 27/March to 17/April. The measured pollutants with reference equipments
were NO, NO and NOX. One prototype Smart Citizen Station was deployed with two Smart Citizen Kits.

The results found with this methodology in the reduction sensors (NO , O3) are significant in a daily basis. Two examples of
the variation of the correlation coefficient with respect to the delta used to calculate the baseline are shown below:

3

3

•
2

•
2

2

11.1.2Sensor Calibration

- 158/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

The algorithm is set to apply the best performing correlation function from either a linear or an exponential fit, basing this
decission on the one that yields better correlation coefficient. NO and O3 at high concentrations yield better results with
an exponential fit, whilst lower concentrations reflect a linear trend:

2

11.1.2Sensor Calibration

- 159/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Furthermore, the study from which this methodology is drawn from states that oxidation sensors do not yield a proper
baseline correlation methodology and so is validated. The result is indeed far better correlated with the reference
measurement if using the manufacturer's methodology:

11.1.2Sensor Calibration

- 160/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

This methodology reads as follows:

Concentration \ [ppm] = {I_{WE}-n(I_{AE}) \ [nA] \over Sensitivity \ [nA/ ppm]}

Where:

I_{WE} (nA) = K (nA/mV) V_{WE} (mV)
I_{AE} (nA) = K (nA/mV) V_{AE} (mV)

11.1.2Sensor Calibration

- 161/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Where: * I_{PCBWE} and I_{PCBAE} are the electronic offsets for each electrode * n = {I_{0WE} \over I_{0AE}}, the ratio
between alphasense's zero currents * k is a constant convertion factor (~ 6.36 in the case of the SCK Gas Pro Board
electronics)

In the case of NO , the results provided by this baseline correction algorithm yield better results:

Both, CO and NO pollutants, using the best method for each calculation, are shown below:

2

2

11.1.2Sensor Calibration

- 162/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Finally, a comparison between the reference measurement results from both methods is detailed below:

As seen above, the NO correlation with both methods yields significant results for non-corrected signals, whilst the RMSE
values are higher in the case of the manufacturer's proposal. Therefore, for this pollutant, the selected methodology will be
the baseline method. On the contrary, the CO measurements are highly uncorrelated with the baseline method, whilst the
original manufacturer's proposal yields decent results. Finally, the O3 correlation levels are lower than the CO and NO
measurements. This is possibly due to the O3 reference measurement equipment used in the Bologna campaing, since it
shows an inverse relationship with NO which suggests a biased pollutant calculation in the reference equipment:

Manufacturer Method Baseline Method

Pollutant RMSE / R2 RMSE / R2

CO (ppm) 0.2-0.3 / 0.3-0.5 >2 / <0.01

NO (ppb) 21-24 / 0.3-0.5 6 - 12 / 0.4 - 0.6

O3 (ppb) 20-40 / 0.1-0.3 4-9 / 0.1 - 0.3

2

2

2

2

11.1.2Sensor Calibration

- 163/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

As well, the results from UCD that are used as a reference for NO , suggest a poor zero/span calibration of the equipment
as it yields negative results that could spoil the NO correlation/model errors from those tests:

2

2

11.1.2Sensor Calibration

- 164/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Baseline correction based on auxiliary electrode

As seen above, the results from applying this methodology to a low concentration, urban environment measurement with 4-
electrode sensors yield significantly correlated results in the case of the reductive sensors. It was also seen that oxidation
measurements are significantly correlated with the reference measurements while using the manufacturer's suggested
method.

However, as detailed in the following section, the use of the auxiliary electrode as the source of the correction yields better
results due to:

The auxiliary electrode is accounting for both, temperature and absolute humidity. The latter could be discarded if the
relative humidity is not considered.

Since data is treated in a day to day basis, variations of mean temperatures during different days could provoke significant
correlations to be found at different timelapses. This provokes gaps in the prediction during night hours that are reduced
by the use of the auxiliary electrode.

Finally, it is preferrably to use data contained in a single sensor (such as the auxiliary electrode for the EC sensor) rather
than including additional sensors in the algorithm.

A comparison between the results using this proposed method and the reference measurement from both test campaigns is
seen below:

•

•

•

11.1.2Sensor Calibration

- 165/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

11.1.3 References

The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks - M.I. Mead, O.A.M. Popoola, G.B. Stewart, P.
Landshoff, M. Calleja, M. Hayesb, J.J. Baldovi, M.W. McLeod, T.F. Hodgson, J. Dicks, A. Lewis J. Cohen, R. Baron, J.R. Saffell, R.L. Jones

Development of a baseline-temperature correction methodology for electrochemical sensors and its implications for long-term stability - Olalekan A.M.
Popoola*, Gregor B. Stewart, Mohammed I. Mead, Roderic L. Jones

Modelling atmospheric composition in urban street canyons - Vivien Bright, William Bloss and Xiaoming Cai

Manufacturer Method Baseline Method With Temperature Baseline Method With Auxiliary Electrode

Pollutant RMSE / R2 RMSE / R2 RMSE / R2

CO (ppm) 0.2-0.3 / 0.3-0.5 >2 / <0.1 >2 / <0.01

NO (ppb) 21-24 / 0.3-0.5 6-12/0.1-0.4 6 - 12 / 0.4 - 0.6

O3 (ppb) 20-40 / 0.1-0.3 4-12 / <0.2 4-9 / 0.1 - 0.3

2

1.

2.

3.

11.1.3References

- 166/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://www.sciencedirect.com/science/article/pii/S1352231012011284?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1352231012011284?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1352231012011284?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1352231012011284?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1352231016308317?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1352231016308317?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1352231016308317?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1352231016308317?via%3Dihub
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/wea.781
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/wea.781

11.2 Metal Oxide sensors
The Smart Citizen Kit has been using metal oxide sensors for air quality metrics for a long time, and we thought that it would
be interesting to dedicate a section for them!

11.2.1 A word about Metal Oxide Sensors

Metal Oxide Sensors measure the resistance (R) of a sensitive layer after heating it up with a heating element (normally
another resistor). However, this reading cannot be considered as an absolute measurement of the target pollutant
concentration, since the resistance varies from sensor to sensor, and it's affected by several conditions, such as
temperature, humidity and other non-target pollutant affectations. To mitigate this problem, the output of the sensor is
normalized using the baseline resistance (R): R is divided by R . This baseline resistance is the resistance that the sensor
sees in clean air, and the cleaner the air is, the higher the resistance is.

Unfortunately, since R varies with the deployment conditions, R cannot be determined by a one-time calibration; and in
the case of the AMS CCS811 included in the SCK V2.1, is maintained on-the-fly in software. This process is known as
baseline correction.

Previous versions of the SCK (V1.5, V2.0 and others) included the SGX MICS4514, which was meant to measure CO and
NO , and a lot of effort was put in V2.0 to improve the driver for the sensor, aiming to reduce power consumption and
improve sensor readings. Unfortunately, this didn't match our expectations in terms of data quality and power consumption,
and since individual sensor calibration is not feasible in our case (as some scientific publications have suggested), we
decided to focus efforts in simpler, more robust and understandable set of sensors.

That being said, the SCK V2.1 includes the AMS CCS811 for Air Quality indicative measurements for indoor air quality in the
Urban Sensor Board, and the PMS5003 for outdoor PM exposure. More complex outdoor set-ups will be also possible, for
instance using the Gas Pro Sensor Board (featuring up to three Alphasense Electrochemical Sensors)[9][^10]. This board
is currently under evaluation and will be available soon.

What to expect from Metal Oxide Sensors

As said above, this type of sensors is not meant for fine pollution monitoring, but is more oriented for air quality indications
and trends detection. Our approach is to use them for indicative measurements, and progressively tend towards a more
reliable, fine and robust system, once the technology is capable of providing so.

While deploying them, since the air quality is expected to vary in a typical environment, the minimum time over which a
baseline correction is applied is 24 hours. This means that the sensor output will change with time, until the baseline is
roughly stable. Since the sensor monitors the baseline resistance periodically, if a cleaner air is found, the new baseline
resistance is used to calculate the sensor readings (although this is only done for future readings). This also means that the

Check this link for more information about the specifics of the eCO2 - TVOC sensor

Learn More

Check the Legacy Hardware Section!

Looking for the CO/NO2 MOs?

S

A S A

A A

2

8][

11.2Metal Oxide sensors

- 167/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

SCK should not be interrupted with an ad hoc power cut since this could erase the baseline resistance and the sensor
could always yield wrong readings since it never sees clean air.

11.2.1A word about Metal Oxide Sensors

- 168/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

11.3 Introduction to Noise Sensor Design

11.3.1 Basics of MEMs I2S Microphone

The new Urban Sensor Board SCK 2.0 comes with a digital MEMs I2S microphone. There is a wide range of possibilities in
the market, and our pick was the INVENSENSE (now TDK) ICS43432: a tiny digital MEMs microphone with I2S output. There
is an extensive documentation at TDK's website coming from the former and we would recommend to review the nicely put
documents for those interested in the topic.

Image credit: Invensense ICS43432

To begin with, we'll talk about the microphone itself. The MEMs microphone comes with a transducer element which
converts the sound pressure into electric signals. The sound pressure reaches the transducer through a hole drilled in the
package and the transducer's signal is sent to an ADC which provides with a signal which can be pulse density modulated
(PDM) or in I2S format. Since the ADC is already in the microphone, we have an all-digital audio capture path to the
processor and it’s less likely to pick up interferences from other RF, such as the WiFi, for example. The I2S has the
advantage of a decimated output, and since the SAMD21 has an I2S port, this allows us to connect it directly to the
microcontroller with no CODEC needed to decode the audio data. Additionally, there is a bandpass filter, which eliminates
DC and low frequency components (i.e. at fs = 48kHz, the filter has -3dB corner at 3,7Hz) and high frequencies at 0,5·fs
(-3dB cutoff). Both specifications are important to consider when analysing the data and discarding unusable frequencies.
The microphone acoustic response has to be considered as well, with subsequent equalisation in the data treatment in
order.

11.3Introduction to Noise Sensor Design

- 169/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://www.invensense.com/products/digital/ics-43432/
https://www.invensense.com/products/digital/ics-43432

Image credit: ICS43432 Datasheet - TDK Invensense

I2S Protocol

The I2S protocol (Inter-IC-Sound) is a serial bus interface which consists of: a bit clock line or Serial Clock (SCK), a word
clock line or Word Select (WS) and a multiplexed Serial Data line (SD). The SD is transmitted in two’s complement with MSB
first, with a 24-bit word length in the microphone we picked. The WS is used to indicate which channel is being transmitted
(left or right). In the case of the ICS43432, there is an additional pin which corresponds with the L/R, allowing to use the left
or right channel to output the signal and the use of stereo configurations. When set to left, the data follows WS’s falling
edge and when set to right, the WS’s rising edge. For the SAMD21 processor, there is a well developed I2S library that will
take control of this configuration.

11.3.1Basics of MEMs I2S Microphone

- 170/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://www.invensense.com/wp-content/uploads/2015/02/ICS-43432-data-sheet-v1.3.pdf
https://www.sparkfun.com/datasheets/BreakoutBoards/I2SBUS.pdf
https://github.com/arduino/ArduinoCore-samd/tree/master/libraries/I2S

Image credit: I2S bus specification - Philips Semiconductors

Also, we would like to highlight that the SD line of the I2S protocol is quite delicate at high frequencies and it is largely
affected by noise in the path the line follows. If you want to try this at home (for example with an Arduino Zero and an I2S
microphone like this one, it is important not to use cables in this line and to connect the output pin directly to the board, to
avoid having interfaces throughout the SD line. One interesting way to see this is that every time the line sees a medium
change, part of it will be reflected and part will be transmitted, just like any other wave. This means that introducing a cable
for the line will provoke at least three medium changes and a potential signal quality loss much higher than a direct
connection. Apart from this point, the I2S connection is pretty straight forward and it is reasonably easy to retrieve data from
the line and start playing around with some FFT analysis.

11.3.2 Basics of weighting and human hearing

The world of acoustics and signal processing for audio analysis is worth several book-length discussions. We might as well
try to give an insight of our intentions within this world since we introduced ourselves in it by picking a digital microphone
with a quite nice range of capabilities.

The very first thing we would like to do is to be able to perform weighting on the buffer we receive from the microphone
through the I2S. To explain a bit further on what weighting is, it is no more than a transformation from the real-world sound
pressure levels (SPL) travelling around in the air to what our ears can perceive. Just that.

11.3.2Basics of weighting and human hearing

- 171/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://www.sparkfun.com/datasheets/BreakoutBoards/I2SBUS.pdf
https://www.tindie.com/products/onehorse/ics43432-i2s-digital-microphone/

Image credit: Human hearing - DSP Guide

There are several studies and models of what we actually perceive and depending on them, we have several types of the so
called weighting functions. Some of them have been standarised for the purpose of SPL measurement, finding different
types like A-weighting (the most common one), B-weighting, D (both in disuse) and others. In the frequency domain, they
look like this:

Image credit: A-weighting - Wikipedia

11.3.2Basics of weighting and human hearing

- 172/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://www.dspguide.com/ch22/1.htm
https://en.wikipedia.org/wiki/A-weighting#Deficiencies_of_A-weighting
https://en.wikipedia.org/wiki/A-weighting#Deficiencies_of_A-weighting

This means that, even if the are high sound pressure levels floating around in the air, we might not hear them just because of
the frequency they are at. Normally humans can hear from something around 20Hz to 20kHz, although most adults might
not hear anything in out-of-laboratory conditions above 15kHz. Some animals though, can perceive a great range of
frequencies, and for example mouses can hear up to 80kHz! So, now we know what this all is about, the I2S microphone is
going to help us understand better how beluga whales communicate among themselves...

But also! The I2S microphone is interesting in order to understand sources of urban noise pollution since it provides us
with a raw SPL buffer we can play with. As well, we can obtain dBA levels (SPL with a-weighting correction) by processing
this buffer in several ways and calculate the RMS level of the resulting signal.

11.3.3 Signal postprocessing

RMS and FFT algorithm simplified

In this paragraph we'll continue with some bits and pieces about acoustics and signal processing. In the previous section we
introduced the concept of weighting and our interest on calculating the sound pressure level in different scales. Normally,
SPL is expressed in RMS levels, or root mean square. This is nothing more than a modified arithmetic average, where each
term of the expression is added in its square form. Therefore, to keep the same units, we then take the square root of all the
average and we have:

x = {\sqrt{x_1^2+x_2^2+...+x_N^2 \over N}}

The interesting thing about the RMS level, is that it expresses an average signal level throughout the signal, and it actually
relates to the peak level of sinusoid wave by √2. Therefore, it is a very interesting way to express average levels for signals
and for that reason, it's the common standard used.

Image credit: Sine wave parameters- Wikipedia

Now that we know how to calculate the RMS level of our signal, let's go into something more interesting: how do we actually
perform the weighting? Well, if you recall the previous section, when we talked about hearing, we were talking about the
different hearing capabilities in terms of frequencies (in humans, mouses, beluga whales...). Therefore, something
interesting to know about our signal is its frequency content, so that we are able to perform the weighting. For this purpose,
we have the FFT algorithm, which we won't tell you is easy, but we'll try to put it simply here.

So FFT stands for Fast Fourier Transform, and it's an algorithm capable of performing a Fourier Transform in a simplified
and efficient way (that's where the fast comes in). What it does in a detailed mathematical way is something quite

11.3.3Signal postprocessing

- 173/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Animal_hearing_frequency_range.svg/512px-Animal_hearing_frequency_range.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Animal_hearing_frequency_range.svg/512px-Animal_hearing_frequency_range.svg.png
http://www.bbc.com/earth/story/20150120-mystery-squeaks-of-beluga-whales
http://www.bbc.com/earth/story/20150120-mystery-squeaks-of-beluga-whales
https://upload.wikimedia.org/wikipedia/commons/thumb/8/89/Sine_wave_voltages.svg/400px-Sine_wave_voltages.svg.png

complicated and we don't want to bore you and ourselves with the details; but being practical, it is basically a convertion
between the signal in time domain and its frequency domain components. Interestingly, this process is reversible and the
other way around it is called IFFT (I for Inverse, obviously...).

Image credit: Smart Citizen

In the example above, things in the time domain get a bit messy, but in the frequency domain we can clearly see the
composition of two sine waves of the same amplitude of roughly 40Hz and 120Hz. The FFT algorithm hence helps us digest
the information contained in a signal in a more visually understandable way.

For this introduction, let's move on to what we actually want to do: the much anticipated weighting. At this point, our task is
fairly easy: we just have to multiply both: our signal in the frequency domain with the weighting function and that's it! If we
have a look at the figure below, in the time and frequency domain, the signals look like this:

11.3.3Signal postprocessing

- 174/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Image credit: Smart Citizen

This example shows how our ears are only capable of perceiving the signal in red, but the actual sound components are in
blue -- being much higher in the amplitude spectrum. If you want to get into the thick of it, here you have the actual
implementation in Matlab of the A-weighting function that we'll use in the SCK V2.0.

And finally, to close, let's take a look at the whole chain of processing, where we will continue in future sections:

Signal acquisition

Windowing

FFT

Spectrum Normalisation

Equalisation

A-weighting

RMS calculation

This is the whole signal treatment process we use for the I2S microphone ICS43432. We will have a look at windowing and
its use in future sections, as well as its implementation in the SAMD21 Cortex M0+ for our firmware.

1.

2.

3.

4.

5.

6.

7.

11.3.3Signal postprocessing

- 175/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/oscgonfer/AudioI2S_SCK/tree/master/OCTAVE/A_WEIGHTING

NB: Being mathematical purist, there is yet another possibility for this procedure using convolution in time domain, which we
will cover in future sections.

Pre/post processing: signal windowing and equalisation

SIGNAL WINDOWING

In this section we are going to describe how we have to pre-post process our signals in order to obtain the results in the
manner we are expecting. These are very important steps in our processing chain, since the FFT algorithms -or convolution
FIR Filters- won't be able to cope with our system's limitations. These limitations might not be obvious at the beginning, but
you really don't want to ignore them while designing your system, since they'll invalidate many of your measurements.

The very first of these limitations, is the fact that our microphone is, in fact, taking discrete samples of the ambient noise
surrounding it. This means that, from the very beginning, we are missing some pieces of information and we will never be
able to process them. But it's OK! For the purpose of our analysis, we don't need to sample continuosly and this situation is
easily bypassed.

Image credit: NUTAQ - Signal processing

Discrete sampling has two main consequences for us: the first one is that we are taking samples once every 1/f_s, where f_s
is the sampling frequency. Normal audio systems sample at 44,1kHz, but this number might vary depending on the
application. If you remember this chart, you might be wondering why we have to sample at such a high frequency.

11.3.3Signal postprocessing

- 176/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://www.nutaq.com/blog/analog-digital-%E2%80%93-part-2-conversion-process
https://upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Animal_hearing_frequency_range.svg/512px-Animal_hearing_frequency_range.svg.png

Image credit: Signal acquisition - Adinstruments

This is due to the Nyquist sampling criterion, which states that at a minimum, we have to sample at double the maximum
frequency we want to analyse. Since humans hearing has a limited frequency range that goes up to 20kHz in some cases,
it is reasonable to use something around 40kHz. With this, the Nyquist criterion solves the so called aliasing problem, in
which several sinusoid signals could fit the same sampling pattern if the number of samples is too low:

Image credit: Wikipedia - Aliasing

The second of the discrete sampling limitation comes from the amount of samples we are able to handle at a time.
Normally, this is due to memory limitations in the RAM, although we'll see in the future where to allocate them.
Nevertheless, it is not useful to handle buffers that are too long, since at some point, the increase of buffer length does not
provide any additional information. Buffer length requirements in our case come from the minimum frequency we want to
sample, which is around 20Hz. Doing some quick math, we need 0,05s worth of sample buffer, which at 44,1kHz is roughly
2200 samples. This is equally too many samples, considering that each could be allocated as a uint8_t , taking up to 16kB
just for the raw buffer!

This is where signal windowing kicks in. Imagine that we have a very-low-frequency sinusoid and that we are not able to
sample completely the whole sine wave, due to buffer limitations. By definition, our system is assuming that the discrete
samples we measure are constantly being repeated in the environment, one after the other:

11.3.3Signal postprocessing

- 177/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://www.adinstruments.com/
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
https://en.wikipedia.org/wiki/Aliasing

Image credit: Smart Citizen

When we take the FFT of this signal, we see undesired frequencies that make our frequency spectrum invalid. This is called
spectral leakage and it's mitigated by the use of windows (math funcions, not the OS). These windows operate by
smoothing the edges of our measurement and preventing the jumps in the signal helping the FFT algorithm to properly
analyse the signals.

11.3.3Signal postprocessing

- 178/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://en.wikipedia.org/wiki/Window_function
https://en.wikipedia.org/wiki/Window_function

Image credit: Smart Citizen

With the use of signal windowing, more specifically with the use of the hamming window, we are then able to reduce the
amount of samples needed to roughly 1000 samples. Now we are down to 50% of the memory allocation needed without
windowing. You can see the effect on the RMS relative errors in the image below, where the trend of the Hann (another
common window) and the Hamming treated buffers, with respect to the frequency tends to stabilise much more quickly than
the raw buffers.

11.3.3Signal postprocessing

- 179/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Image credit: Smart Citizen

There is a wide range of functions to use and the decision depends on your application. For audio applications, the most
common ones are the Hann, Hamming, and Blackmann. We chose the Hamming because it's trend is to stabilise a bit more
quickly than the rest, although the differencies are minimal. For your reference, there is a very interesting description of all
these phenomena in this article, where you'll find a more mathematical approach.

Filtering and convolution

In this section we are going to talk about a different approach to the FFT Analysis we have seen in previous sections. What if
we don't like the FFT algorithm and we only want to obtain a dBA or dBC results? There is a fairly simple solution to this
problem, and it's called filtering.

Filtering is a very common technique in signal acquisition that eliminates some frequency components of the raw signal.
Examples of filters you very likely have heard of are low-pass, high-pass and band-pass filters. These only let pass the low,
high or a defined interval range of frequencies, mostly cancelling out the rest. In the frequency domain, they basicly multiply
the spectrum of our signal with its filter spectrum. Exactly what we have done with the weighting.

Talk about the microphone response and how to correct it.

Info

11.3.3Signal postprocessing

- 180/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://www.ni.com/white-paper/4278/en/

Image credit: Norwegian Creations

First, it is important to get a glimpse of the math behind the filters and why they do their magic. And for this, the most
important thing we need to know is called convolution.

Image credit: River Trail

For the purpose of audio analysis, let's consider we have an input vector, a filter kernel and an output vector. Our input
vector can be the raw audio signal we have captured, being the output signal the result of the convolution operation. The
filter kernel is the characteristic of the filter and will be, for this example, a one dimension array. What the convolution
operation is going to do, in a very very very simplified way, is to sweep through the input sample and multiply each
component with it's corresponding filter kernel component, then sum the results and put them in the corresponding output
sample. If we put some math notation and call x[n] to the input vector, h[n] to the filter kernel and y[n] to the output vector, it
all ends up looking like this:

11.3.3Signal postprocessing

- 181/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://intellabs.github.io/RiverTrail/tutorial/

Image credit: DSP Guide

Now, the most interesting thing of all this theory is that convolution and multiplication are equivalent operations when we
jump from the time to the frequency domain. This means that multiplication in time domain equals to convolution in
frequency domain, and more importantly for us, convolution in the time domain, equals to multiplication in the frequency
domain. To sum up, the relationship between both domains would look like:

11.3.3Signal postprocessing

- 182/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://www.dspguide.com/

Image credit: SmartCitizen

Therefore, what we could do is to define a custom filter function and apply it via convolution to our input buffer. This is
basically a FIR filter, where FIR stands for Finite Impulse Response. There is another type of filters called IIR, where IIR
stands for Infinite impulse response. The difference between them is that FIR uses convolution and IIR uses recursion. The
concept of recursion is very simple and it's nothing else than a simplification of the convolution, given that in the
convolution algorithm, there are many recursive operations that we repeat over an over and we can implement into a
smarter algorithm. Normally, IIR filters are more efficient in terms of speed and memory, but we need to specify a series of
coefficients, and it's tricky, if not impossible, to create a custom filter response.

Image credit: DSP Guide

So finally! How can we avoid using the FFT algorithm to extract the desired frequency content of a signal and recreate the
signal without it? Sounds complex, but now we know that we can use a FIR filter, with a custom frequency response and
apply it via convolution to our input buffer. As simple as that. The custom frequency response, with the proper math, can be
optained by applying the IFFT algorithm to the desired frequency response (for example, the A-weighting function). You can
have a look to this example if you want to create a custom filter function in octave, with A or C weighting and implement it to
a FIR filter in C++.

11.3.3Signal postprocessing

- 183/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://www.dspguide.com/
https://github.com/oscgonfer/AudioI2S_SCK/tree/dev_i2s_dbg/OCTAVE
https://www.gnu.org/software/octave/

Image credit: SmartCitizen

Also, if you are really into it, you can read more about convolution and other DSP topics, we would recommended to go
through this fantastic guide.

AFSK Analyser

In this section we are going to talk about a new feature we are planning to introduce in the upcoming version of the SCK: a
FSK communication protocol via Audio (A-FSK). You might have read about this technique and it’s usage in the Amazon
Dash configuration process, and on the post today we are going to describe very briefly the work in progress for this feature.

So! FSK stands for Frequency Shift Keying, which is a form of transmission through frequency variations on the carrying
waveforms. It’s major counterpart is the so called ASK, or Amplitude Shift Keying, in which the transmission is carried out
via amplitude variations. A very simple form of ASK is OOK, which stands for On-Off-Keying, in which the amplitude of the
carrier wave oscillates between a value and nothingness:

11.3.3Signal postprocessing

- 184/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://www.dspguide.com/ch6.htm

Image credit: Electric Stack Exchange

As in many other situations, there is a trade off between the options on the table: ASK or FSK? Maybe another one? The
main disadvantage of ASK it is said to have a higher probability of error with respect to FSK, since noise interference affects
amplitude of the transmitted wave. FSK, on the other hand, it is said to have a lower bandwidth efficiency. However, since

11.3.3Signal postprocessing

- 185/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

we have talked about FFT quite a lot now, we thought FSK would be our best bet and also, because maybe bandwidth is not
such a big deal after all as we can see below.

Then, the idea is to implement an algorithm that is able to identify if the sound transmitted from an emitter (i.e. a
smartphone) contains a series of reference frequencies in certain known spots. Following this principle, our aim is to
transmit a byte per sound wave, hence, in a sound wave containing up to 8 possible carrier frequencies that might or not be
activated. The activation (or not) of these frequencies in the analysed spectrum will yield a 1 or a 0, that we can use on a bit
mask and extract 8-bit ASCII characters codes:

Image credit: Martin Melhus

The emitter could be based on the Web Audio API, as the example from Martin Melhus above from his project on a Web
Audio Modem. Finally, the receiver would be our beloved I2S Mems microphone that we have been talking about for so long
now, doing a FFT algorithm and detecting the peaks in it, identifying the carrier frequencies activation.

11.3.4 Field Evaluation

The sensor is calibrated in an anechoic chamber with a reference microphone to obtain sensor characteristics for spectrum
equalisation. The TDK ICS43432 (former Invensense) has a clear non-linear response, which is specified in it's datasheet
and is characterised in an anechoic chamber as specified above:

Image credit: Invensense ICS43432

The results for this characterisation, for different SPLs are shown below:

11.3.4Field Evaluation

- 186/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://www.sciencebuddies.org/science-fair-projects/references/table-of-8-bit-ascii-character-codes
https://martinmelhus.com/
https://www.invensense.com/products/digital/ics-43432

The microphone's spectrum response is not dependent on the SPL, but only on the frequency. The above response is
corrected in the Smart Citizen Kit on real time. A double point validation is performed on both microphones, from the
SCK1.5 and the SCK2.0, yielding the following results:

11.3.4Field Evaluation

- 187/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Finally, if comparing these with the thresholds, in dBA scale IEC 61672-1, without accounting for the previous equalisation:

Which yields a very good linearity off-the-shelf over the common urban frequency range (below 2000Hz).

11.3.5 Source files

Download

Check the source code

11.3.5Source files

- 188/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://webstore.iec.ch/preview/info_iec61672-1%7Bed1.0%7Den_d.pdf
https://github.com/fablabbcn/smartcitizen-kit-audio/archive/master.zip
https://github.com/fablabbcn/smartcitizen-kit-audio

11.4 PM Sensors

11.4.1 Working principle

The PM sensors available in the Smart Citizen Kit (one sensor per Kit) and the Smart Citizen Station (two sensors per
Station), are the Plantower PMS5003 sensor. The PMS5003 is a nephelometer, and this type of measures suspended
particulates by employing a light beam and a light detector set to one side (often 90°) of the source beam. Particle density is
then a function of the light reflected into the detector and the particle mass is a calculation derived from this density,
assuming certain properties of the particles, such as shape, color and reflectivity, among others.

What the sensor does, is to analyse the readings from the sensing element and count how many particles are there, for
different particles sizes, or bins. This means that the sensor will group, for instance, the particles that have a diameter
between 1um and 2.5um in one bucket, and count them. Once it has the particle number calculated for all the buckets, it
estimates the Particle Mass for PM1 (particles with a diameter below 1um), PM2.5 (particles with a diameter below 2.5um)

11.4PM Sensors

- 189/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://en.wikipedia.org/wiki/Nephelometer

and PM10 (particles with a diameter below 10um). For estimating this, it makes quite a few assumptions (the internal
calculations are unknown to us), such as:

Particle shape (normally a sphere, but with some shape factors)

Particle color, and hence reflectivity index

Particle composition, and hence density

11.4.2 Sensor considerations

These sensors are used in some other projects, such as Purple Air and have been evaluated in laboratory by the Finnish
Meteorological Institute - FMI and in outdoor conditions the South Coast AQMD (Air Quality Management District), USA.
The study by the FMI did not yield good results for this sensor (specially in PM10), but given the cost we still think is a good
citizen awareness sensor and that can be used for certain studies. The AQMD study shows better results for PM10 and
PM2.5 with high correlation results with respect to reference equipment (R2 > 0.9 in most cases), although we are not aware
of actual testing conditions, or the reference equipment calibration. Other authors also show good results and recommend
the usage of these sensors, although in some measurement conditions (like specific types of particles) they perform better,
which makes sense given the assumptions mentioned above (read the academic article here). Similar sensors are used in
the Luftdaten project (with a SDS011 in this case).

Relative humidity affects this type of sensor, since particles can absorb water and grow in size, hence modifying the
fractions and the calculated mass. Additionally, particle's chemistry can affect these assumed properties, and these
assumptions may not be usable in every type of environment. However, a relative humidity correction is being tested,
correcting size distribution based on particle higroscopicity.

Powering the sensor

Make sure that you power the Smart Citizen Kit with a good enough USB cable and with an adaptor that can provide at
least 1A. We have found some issues when powering the sensor with a thin cable, or from a weak power source, like a
screen.

•

•

•

We have been part of a study in which we characterised a few low cost sensors. You can check it in here

The performance of the sensor

Have a read to the Datasheet

Sources

The sensor might get clogged in a very dusty environment (like a workshop) and might need some periodic cleaning. It is safe to use a vaccum cleaner
to do so, but be careful not to damage the light sensor, the laser emitter or the fan during the process.

Dusty environments

11.4.2Sensor considerations

- 190/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://doi.org/10.5194/amt-2019-422
https://cdn-shop.adafruit.com/product-files/3686/plantower-pms5003-manual_v2-3.pdf
https://www2.purpleair.com/
https://doi.org/10.5194/amt-2019-422
https://en.ilmatieteenlaitos.fi/
https://en.ilmatieteenlaitos.fi/
http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/purpleair---field-evaluation.pd
https://doi.org/10.1016/j.envpol.2018.11.065
https://luftdaten.info/en/home-en/
https://inovafitness.de/produkt/sds011/

11.5 About CO-NO2 Metal Oxide Sensors
The SGX Mics is a Metal Oxide Resistive sensor capable of reacting to different substances in the atmosphere. In a
simplified way, it is comprised of two main elements:

A SnO substrate that acts as a sensor element

A heater element to keep the substrate in an optimal working area

The SnO is a chemically sensitive metal oxide which has interactions with molecules to be detected in the target gas. The
reactions that can occur on SnO surface are adsorption and catalytic reactions, which basically mean that the gas
molecules can be adsorbed onto the surface or can catalyse reactions (trigger or enhance them). They take place at the so
called active sites or grain boundaries, which are areas where the grains that constitute the sensor resistance are in
contact with the air (e.g. with metallic contacts). Hence, metal oxide substrate is basically a collection of sites at which
different molecules can be absorbed and therefore interact in various manners with the species present in the atmosphere:
either through catalytic reaction, surface reaction, grain boundary reaction (among others). .

The sensor element is typically heated to a few hundred degrees (ºC) using a small resistive heater. The regions within the
sensor can be described as in Peterson et al. : the surface, which interacts with the gas, the bulk, which is unaffected by
it, and the particle boundary, which lies in between these two. The particle boundary is situated at a distance from any
material exposed to the atmosphere into the sensor that chemical electrostatic effects can propagate (the so called Debye
length), and this is related to the material’s physical properties. At high temperatures, oxygen atoms bond onto the
boundary, extracting electrons in the process from the semiconductor’s surface region. The oxygen either then directly
reacts with ambient gases, or these gases also bond onto the sensor, which causes more charge carriers to be withdrawn or
injected into the surface region. All these effects change the sensor resistance and it is measured accordingly in :

In the case of the SGX 4514, the detection of the pollution gases is achieved by measuring the sensing resistance of both
sensors. In a generic way, we could characterise the sensor resistance as follows:

RED sensor resistance decreases in the presence of CO and hydrocarbons.

OX sensor resistance increases in the presence of NO .

Finally, the chemical reactions within the resistive element are directly related to temperature and follow an Arrhenius
equation type of behaviour. Each sensor's type has a different optimal operation temperature, which is translated into
different heating powers for the heater element. Depending on the heating power and transition speeds, different reactions
can be facilitated and this can lead to positive effects such as sensor clean up or battery compsuption savings, for
example, when heated up in a pulsed profile. On the other hand, it can facilitate sensor poisoning or ageing, which
highlights the need of proper sensor characterisation.

11.5.1 Sensor Calibration

The SGX4514 is a low cost sensor originally ment to detect instances or trends of target gas in the atmosphere . The
applications intended for these sensors are ‘event sensing‘ applications and the level of accuracy required is not
necessarily within regulatory standards. Furthermore, these sensors should not be used with safety related issues.

• 2

•

2

2

2

1

1

•

• 2

45

11.5About CO-NO2 Metal Oxide Sensors

- 191/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://en.wikipedia.org/wiki/Arrhenius_equation
https://en.wikipedia.org/wiki/Arrhenius_equation

However, despite the low cost nature of these sensors, they have been subject of a great deal of research and have
been reported to give considerably good results in field applications. Before delving into the details of sensor calibration, we
will try to understand what these sensors are and how they should be handled. Some important definitions are:

Sensor baseline resistance: is the resistance that the sensor exhibits when it's not powered

Sensor sensitivity: is the resistance variation with variations in the target gas

Sensor cross-sensitivity: is the resistance variation with variations of gases other than the target gas

Sensor poisoning: an irreversible resistance variation provoked by the reaction of gases other than the target gas

Source: Peterson et al.

Peterson et al. describes the various types of interactions between atmospheric gases and a MOS sensor surface. In the
image above, the leftmost region describes the unpowered behaviour, or base resistance. The three other regions of the
diagram describe different processes that actually occur simultaneously to varying degrees. The sensor’s output is the
resistance across the whole of the sensor material, which forms a resistor network with contributions from both the bulk and
surface regions. The model described in also explains the wide variation in base resistance between individual sensors of
the same type, as the random nature of the surface geometry means an equally random network of resistances. This
diagram is a two-dimensional representation of a three-dimensional material; in an actual sensor, the sensitive region is
spread into the surface with a distance dependent on the grain size and arrangement resulting from the sintering.

Each sensor will then have a different resistance in air and how much this baseline resistance changes with the
concentration of the target gas will also differ (what we defined above as sensitivity). Therefore to convert from resistance
readings to concentration it is necessary to derive a calibration curve for each sensor. This will require measuring the
resistances in air and at a number of gas concentrations over the desired range. It is important that the concentrations are
in a background of air as Oxygen is needed for the sensor to work correctly. As stated in , the sensor’s response is only
partially a function of the amount of gas to which the surface is exposed. Instead, the sensor will have a baseline resistance
that is related to the bulk and particle boundary resistance. Because of the random geometry of the granular sensor
surface, the baseline resistance will vary between individual sensors.

The change in resistance with the change in gas concentration is generally not a linear response. The response can be
measured and fitted to a polynomial relationship, with interactions from other metrics such as temperature, humidity and

123

•

•

•

•

1

1

1

2

11.5.1Sensor Calibration

- 192/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

other gases. It has been proved that air flow around the sensor yields better sensor reactivity, and that the usage of PTFE
filters also helps reducing cross-sensitivity and sensor poisoning. An important practical consideration with any in situ air
quality sensor design is ensuring adequate flow of sampling air through the device. Stale air inside a casing will produce
unrepresentative results, and even sensors mounted outside a casing might not get a properly-mixed sample.

Source: Peterson et al.

Although the deployment of multiple different sensors can compensate for the cross-sensitivity issues in calibration, it
cannot eliminate it. MOS sensors can thus be used only in situations where any interfering species can either be measured
by other means, or they must be calibrated regularly and used in locations where the background varies in concentration
slowly compared with the target gases. As well, the sensor drift over time is an important issue that requires sensor
recalibration over time.

There are two major factors in the longevity of a sensor’s calibration. The first is the natural degradation of the heater
element, which becomes hotter over prolonged use and causes the sensor’s response profile to vary. The second is the
effect of slowly-varying interfering gases, which over the course of months shifts the sensor’s baseline. The first problem
may have an engineering solution, but the second will involve taking the results of the tests in an artificial atmosphere,
identifying the most critical species and either measuring or possibly modelling their likely concentrations during
deployments.

An analytical approach to counteracting this drift might be "merging calibrations", where a sensor is calibrated at the start
and end of a four-month campaign, and the coefficients gradually change from one end of the experiment run to the other.

Having all this in mind, the sensor calibration we follow is comprised of the following steps:

Sensor behaviour characterisation under different temperature profiles

Sensor baseline and sensitivity characterisation in controlled conditions

Sensor deployment with reference measurements collocation and model calibration

The use of deployment campaigns is of utmost importance in order to develop sensor models that are reality proof. With the
possibility of collecting the data with the SmartCitizen Platform and the data treatment provided by the Sensor Calibration
Framework, we are able to iterate over the different sensor calibration possibilities, ranging from Ordinary Linear Regression
or more advanced techniques such as ML models such as LSTMs networks.

1

•

•

•

11.5.1Sensor Calibration

- 193/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://docs.iscape.smartcitizen.me/Sensor%20Platform/Sensor%20Platform/
https://docs.iscape.smartcitizen.me/Sensor%20Analysis%20Framework/
https://docs.iscape.smartcitizen.me/Sensor%20Analysis%20Framework/

11.5.2 Field results

In this section, we will detail some of the MOS related results obtained during the sensor validation campaigns detailed
below:

University of Bologna: data collected from 23/January to 13/February. The measured pollutants with reference
equipments were CO, NO , NO, NOx and O3. Two prototype Smart Citizen Stations were deployed in two different sites,
with two Smart Citizen Kits.

University College Dublin: data collected from 27/March to 17/April. The measured pollutants with reference equipments
were NO, NO and NOX. One prototype Smart Citizen Station was deployed with two Smart Citizen Kits

For both results shown below, we used an LSTM with 200 epochs training and the following structure:

Carbon Monoxide

The CO model included the following features: CO_{R}^{-1}, CO_R^{-2}, Temp and Temperature^2. The results can be seen
below:

•
2

•
2

from keras.models import Sequential
from keras.layers import Dense, Activation, LSTM, Dropout

model = Sequential()
layers = [50, 100, 1]
model.add(LSTM(layers[0], return_sequences=True, input_shape=(train_X.shape[1], train_X.shape[2])))
model.add(Dropout(0.2))
model.add(LSTM(layers[1], return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(output_dim=layers[2]))
model.add(Activation("linear"))
model.compile(loss='mse', optimizer='rmsprop')

11.5.2Field results

- 194/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Nitrogen Dioxide

The NO model included the following features: NO~2~_{R}, NO~2~_R^{-2}, Light, Temp and Temperature^2. The results can
be seen below:

11.5.3 Metal Oxide Sensors Implementation

Heating stage

The solution present at Urban Sensor Board V2.0 for MICS-4514 sensor's heaters excitation, pretends to make it compatible
with a 3.3V global voltage source.

2

This test campaign contains a short amount of data to be used as a training dataset for a LSTM algorithm. Therefore, this is just to considered as an use
case example and further tests and data should be carried out to train broader models.

Warning

11.5.3Metal Oxide Sensors Implementation

- 195/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

The manufacturer reccomend the following circuit topology, with a global supply voltage of 5V. In the datasheet are
collected the electrical nominal conditions for that resistors, in order to operate safely with the heater, without damaging it.

Besides that, several other possible conditions could also damage early the heater resistors, like the fact of consider a pure
PWM signal, with source 5V and subsequent dutty cycle, as excitation. Even if the frequency is relatively high (100kHz), the
resistors are forced to operate briefly with 5V, and this accelerates the destruction of this part of the MICS sensor.

11.5.3Metal Oxide Sensors Implementation

- 196/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

So its is possible to provide the nominal voltages for heater resistors from a 3.3V source, if we replace the auxiliar resistors
(from recomended topology) with corresponding values, to preserve the total power dissipated and current at same normal
operating conditions.

Even more, we can upgrade the function of the auxiliar resistors adding a capacitor to form a passive RC filter. In the DC or
continuous operation, the capacitor is fully charged and the current is limited by the auxiliar resistor. In AC or pulsed
operation, the capacitor can be selected to remove this AC component, and feed the heater resistor with a nearly constant
voltage or at least with small variations (<1%).

The source for the PWM signal must be buffered, because the resistive load of the system demands currents avobe the
SAMD21 can supply. For this purpose, the solution selected is to use a digital hex-inverter buffer, which can drive up to
32mA with each output pin, wich we can paralelize to operate under propper safety factor for the buffer.

Simulations

The first simulations and given values leads to the selection of the RC components values if we set a PWM frequency
around 40 kHz.

11.5.3Metal Oxide Sensors Implementation

- 197/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

To evaluate the R part of the filter, is needed to take into account the output resistance of the hex-inverter buffer.

Prototypes

We build the circuit into a protoboard, with several IC HEX-INV manufacturers, based on the following schematic:

11.5.3Metal Oxide Sensors Implementation

- 198/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

The measures are sumarized in the following table, in which we compare four pre-selected devices, which can fit in our
application for size an price considerations.

11.5.3Metal Oxide Sensors Implementation

- 199/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Four cases with paralellized inverters, for each device were performed: pasive load 70R test with DC input, and three tests
with 10R+Rheater load at DC input, 60% dutty cycle and 30% dutty cycle. The 74LCX04FT(AE) was selected because it has
the lowest LOW output level (0.45V,0.22V), which is considered here as the quality (or close to ideal) of the square wave
input source.

Final implementation

The solution implemented in the PCB, has a constant auxilar R (10R+Rout_buff), and constant C (47uF), and also operates
at consatant frequency, then, the output power regulation is based on the PWM's dutty cycle. The following circuit represent
the implemented schematic.

11.5.3Metal Oxide Sensors Implementation

- 200/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Operation

First of all, is needed to know the real implemented Rheater of each sensor (which may vary among devices and time), and
can be estimated by measuring the V_heater_* at 100% dutty cycle, then:

Where Rint_buff can be aproximated with 4 Ohm resistor.

The desired_reference_voltage is function of the desired_power_Rheater and dutty cycle. If we set 80mW we can use the
value of the Rheater to obtain desired_reference_voltage through tis formula:

(Take into account this resistor has a drift over time, therefore is recomended to take periodic measurements of the value of
Rheater itself, and check the output power reachability).

With selected parameters, after 2ms of PWM operation, the RC reaches the permanent, and then is recomended to take
measurements of V_HEATER_. The loop can be closed to determine the dutty cycle as function of the difference
(desired_reference_voltage – V_HEATER_ (averaged)).

Is recomended to average several samples to remove the AC part of the signal. The measured DC signal has a noise of
±20mV peak to peak (with triangular distribution).

The sign of the PWM signal is inverted due to the action of the inverter, then, a desired x% dutty is obtained as 100%-x%.

As initial PWM aproximation to begin to converge close to the regulated dutty cycle can be obtained through this
simplification:

11.5.3Metal Oxide Sensors Implementation

- 201/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

References

Practical Use of Metal Oxide Semiconductor Gas Sensors for Measuring Nitrogen Dioxide and Ozone in Urban Environments

Modelling Of Water Adsorption On SnO Surface

MICS-4514 Datasheet

Frequently-Asked-Questions-for-MiCS-Gas-Sensors

SGX Metal Oxide Gas Sensors - How to use and how they perform

Sensors 2017, 17, 1653

1.

2. 2

3.

4.

5.

6.

11.5.3Metal Oxide Sensors Implementation

- 202/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://www.researchgate.net/publication/318567495_Practical_Use_of_Metal_Oxide_Semiconductor_Gas_Sensors_for_Measuring_Nitrogen_Dioxide_and_Ozone_in_Urban_Environments
https://www.witpress.com/elibrary/wit-transactions-on-the-built-environment/34/8033
https://www.witpress.com/elibrary/wit-transactions-on-the-built-environment/34/8033
http://files.manylabs.org/datasheets/MICS-4514.pdf
https://www.sgxsensortech.com/content/uploads/2014/08/AN2-%E2%80%93-Frequently-Asked-Questions-for-MiCS-Gas-Sensors.pdf
https://www.sgxsensortech.com/content/uploads/2014/08/AN-0172-SGX-Metal-Oxide-Gas-Sensors-V1.pdf
http://www.mdpi.com/1424-8220/17/7/1653

12. Guides

12.1 Analyse your data in batch
Sometimes we have a lot of devices to process, and the interfaces for analysis in smartcitizen.me or in the jupyter
notebook might not be the most efficient way to do it. For this reason, we have developed a functionality to process the
data in batches, defining the tasks to perform in a json descriptor file.

The descriptor file can be placed in the src/tasks directory (or any, actually). An example of how to run it is shown in
examples/batch_analysis.ipynb :

12.1.1 Functionality

These tasks are intended to automatise data analysis tasks as the following:

Load, process and export processed data

Generate models and apply them, extracting metrics and comparing if they extrapolate to different set of sensors in
different datasets, without having to run extra code

Make plots for different metrics in an automatic way, and export their renders

Load the object
from src.models.batch import batch_analysis",
tasks_file = '../tasks/batch.json'",
batch_session = batch_analysis(tasks_file, verbose = True)

Run the analysis
batch_session.run()

•

•

•

12.Guides

- 203/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://smartcitizen.me
https://github.com/fablabbcn/smartcitizen-iscape-data/blob/master/examples/batch_analysis.ipynb
https://github.com/fablabbcn/smartcitizen-iscape-data/blob/master/examples/batch_analysis.ipynb

12.1.2 Workflow

12.1.3 Json task description

The descriptor file loaded is a json containing keys for each task to be run. Several tasks can be included and will be run
consecutively:

Each of the tasks contains different fields, depending on what the process is.

{
 "TASK_1":{...},
 "TASK_2":{...},
 "TASK_3":{...}
}

12.1.2Workflow

- 204/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Define data

In case no model needs to be calculated, the data can be specified directly in the task:

If a model is to be calculated, the data is defined within the model key as seen below.

DATA LOADING OPTIONS

frequency : frequency at which load the data (as defined in pandas here)

clean_na : clean or not NaN

clean_na_method : drop or fill with back-forward filling

use_cache : whether or not to use file chaching for the analysis. This adds a cached folder in the corresponding test
directory, which allows faster download from the API . It is implemented so that the only data to be downloaded is the one
that is not cached

min_date , max_date : for limitting the amount of data to be loaded

export_data : if the processed data (after pre-processing and modeling) has to be exported. It will be saved in the
corresponding test folder, under processed . Options are:

None : don't export anything

All : all channels in the pandas dataframe

Only Generic : Export only channels that are under the data/interim/sensorNamesExport.json

Only Processed : Export only channels that are tagged as processed under the data/interim/
sensorNamesExport.json

rename_export_data : Rename the exported channels for better readability using the file data/interim/
sensorNamesExport.json

{
 "TASK_1":{
 "data":{
 "datasets": {
 "TEST_1": ["DEVICE_11","DEVICE_12"],
 "TEST_2": ["DEVICE_21", "DEVICE_22", "DEVICE_23"],
 ...
 },
 "data_options": {"avoid_processed": true,
 "frequency": "1Min",
 "clean_na": true,
 "use_cache": true,
 "clean_na_method": "drop",
 "min_date": null,
 "max_date": null,
 "export_data": null,
 "rename_export_data": false}
 }
}

•

•

•

•

•

•

•

•

•

•

•

In json , we specify the python None as null .

None?

Enable use_cache and we will save some time by checking if the data we have downloaded previously from the API can be used. This also applies for
pre-processing functions.

Want to save time?

12.1.3Json task description

- 205/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://stackoverflow.com/questions/35339139/where-is-the-documentation-on-pandas-freq-tags

Model

In the model sub-task, currently three possibilities are implemented:

Linear methods: OLS or RLM regression

Random Forest (RF) or Support Vector Regressor SVR

XGBoost

In the case of having a model task, the data defined above is ignored, and only the one under model: {"data":{}} is used.

An example is shown below:

This can be overwhelming at first. Just get in touch

Recommended to just get in touch

•

•

•

It is better to generate only one model per task, since the memory used by the models can be very large.

One model per task

12.1.3Json task description

- 206/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

mailto:support@smartcitizen.me

model_name : model name to be saved

model_type : 'RF', 'SVR', 'LSTM' or 'OLS'

model_target : if the model is to be stored under a specific category of models under the models/ folder

data : dict containing the data to use for training, and features description. Under train , we define which of the tests
and devices is to be used for the model definition, with the format {"TEST": "devices": ["DEVICE"],
"reference_device": "REF_DEVICE_1"} . Under test , we define a series of test in which we'll evaluate the model
extracted from the train dataset:

devices : list of devices to use

reference_device : device that contains the reference data

Additionally: + features : dict of devices tagged as REF , A , B , C ... to define the features of the model, being REF the
reference channel in the reference_device - hyperparameters : dict containing different hyperparameters, depending on
the type of model: + For all: * ratio_train : generic, train-test split ratio + OLS: * formula_expresion : stats models formula
type, accepting numpy expressions This formula has to reference the features described under the data section. Example:
REF ~ A * B + np.log(C/2) + Random Forest: * n_estimators : only for RF . number of forests to use * shuffle_split : only
for RF . whether or not use shuffle split + LSTM: * n_lags : number of lags to account in the LSTM input * epochs : number of
epochs (100 or more recommended) * batch_size : batch size (72 recommended)
* verbose : verbose output during training * loss : loss function ('mse' or others) * optimizer : optimizer to use (adam or
others) * layers : specific layer structure. Example below:

"model": {
 "model_name": "Random_Forest_100",
 "model_type": "RF",
 "model_target": "ALPHASENSE",
 "data": {"train": {"TEST_1": {"devices": ["DEVICE_1"],
 "reference_device":"REF_DEVICE_1"}},
 "test": {"TEST_1": {"devices": ["DEVICE_1", "DEVICE_2"],
 "reference_device":"REF_DEVICE_2"},
 "TEST_2": {"devices": ["DEVICE_3"],
 "reference_device": "REF_DEVICE_3"},
 "TEST_3": {"devices": ["DEVICE_4"],
 "reference_device": "REF_DEVICE_4"},
 "TEST_2": {"devices": ["DEVICE_5"],
 "reference_device": "REF_DEVICE_5"}},
 "features": {"REF": "NO2_REF",
 "A": "GB_2W",
 "B": "GB_2A",
 "C": "HUM"
 }
 "data_options": {"export_data": "All",
 "rename_export_data": false,
 "target_raster": 1Min",
 "clean_na": true,
 "clean_na_method": "fill",
 "min_date": null,
 "max_date": null,
 "use_cache": true}
 },
 "hyperparameters": {"ratio_train": 0.75,
 "n_estimators": 100,
 "shuffle_split": true
 },
 "model_options": {"session_active_model": false,
 "export_model": false,
 "export_model_file": false,
 "extract_metrics": true,
 "save_plots": false,
 "show_plots": false
 }
 },

•

•

•

•

•

•

Multiple training datasets are possible as well, by combining them.

Info

12.1.3Json task description

- 207/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

model_options : different options for the model calculated

session_active_model : keep the model active after the task is completed

export_model : export the model (parameters, hyperparameters, weights) to the model/model_type folder after the
task is completed

export_model_file : export the model file (not recommended for RF) fo the same folder as above

export_metrics : export metrics for the model or not

save_plots : save model plots or not

show_plots : show model plots or not

Plots

The plot sub-task accepts two different libraries: matplotlib and plotly . The first one generates static images, that we
can export for nice quality graphs, while plotly is more meant for exploratory analysis.

    ```
    "layers": [{"type": "lstm",
                "neurons": 100,
                "return_seq": true
            },
            {
                "type": "dropout",
                "rate": 0.05
            },
            {
                "type": "lstm",
                "neurons": 100,
                "return_seq": true
            },
            {
                "type": "lstm",
                "neurons": 50,
                "return_seq": false
            },
            {
                "type": "dropout",
                "rate": 0.05
            },
            {
                "type": "dense",
                "neurons": 1,
                "activation": "linear"
            }
        ]},
    ```

•

•

•

•

•

•

•

In the case of the models, we only wanted one model per task, but it's not the case in the plots.

Many plots? No problem

12.1.3Json task description

- 208/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

GENERAL DESCRIPTION

This description is suitable for timeseries plots. Check below for other types:

"plot": {
 "2": {"plot_type": "timeseries",
 "plotting_library": "matplotlib",
 "data": {"test": "TEST_1",
 "traces": {"1": {"device": "5262",
 "channel" : "EXT_PM_10",
 "subplot": 1},
 "2": {"device": "5262",
 "channel" : "EXT_PM_25",
 "subplot": 2}}},
 "options": {"show_plot": false,
 "separate_device_plots": false,
 "target_raster": "10Min",
 "max_date": null,
 "min_date": null,
 "export_path": "/Users/mac/Desktop",
 "file_name": "plot_pm"},
 "formatting": {"xlabel": "Date (-)",
 "ylabel": {"1": "Temp degC",
 "2": "Hum (%rh)"},
 "yrange": {"1": [0, 40],
 "2": [0, 100]},
 "title": "PM",
 "sharex":true,
 "grid": true,
 "height": 10,
 "width": 12}
 },

12.1.3Json task description

- 209/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

plot_type : the plot type to be used. Currently we support timeseries , violin , scatter_matrix , correlation_plot ,
heatmap , barplot , coherence_plot

plotting_library : matplotlib or plotly

data : the data to represent. This data has to be loaded previously. This is only to define the plot:

test : each plot can only represent data from a single test

traces : numbered entries to specify the device , channel and, if applicable, the subplot (only for timeseries)

•

•

•

•

•

12.1.3Json task description

- 210/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

options :

show_plot : whether or not to show the plot. Not recommended for large amounts

separate_device_plots : true in case we want a single plot for each device in traces: devices . false in case we
want to merge all the devices in a single plot (for comparison purposes). Applicable for timeseries

target_raster : the frequency of the data to plot. Reduces processing time

min_date , max_date : if not null , they crop the data with those dates

export_path : where to put the plot. If null , we won't export anything

file_name : how to name the plot. We will append the trace name in case separate_device_plots is set to true

formatting :

xlabel : Name to tag the x axis of the plot

ylabel : Name to tag the y axis(es) of the plot. It can be more than one value in a json style

yrange : Range fro the y axis(es). Same as above

title : plot title

grid : to show the grid or not

height , width : plot height and width

PLOTS SPECIFICS

Heatmap

Set " device : 'all'" and "separate_device_plots": true , and we will make separate plots for each device.

Same plot for many devices?

•

•

•

•

•

•

•

•

•

•

•

•

•

•

12.1.3Json task description

- 211/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

"1" : {"plot_type": "heatmap",
 "plotting_library": "matplotlib",
 "data": {"test": "TEST_1",
 "traces": {"1": {"device": "all",
 "channel" : "NOISE_A",
 "subplot": 1}}},
 "options": {"show_plot": false,
 "separate_device_plots": true,
 "target_raster": "10Min",
 "min_date": null,
 "max_date": "2019-01-03",
 "relative": false,
 "export_path": "/Users/macoscar/Desktop",
 "file_name": "heatmap_noise"},
 "formatting": {"title": "Magnificent plot",
 "grid": true,
 "height": 10,
 "width": 15,
 "frequency_hours": 6}
 }

12.1.3Json task description

- 212/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

plotting_library : recommended library is matplotlib (although we actually use seaborn)

formatting :

frequency_hours : to choose between 1, 2, ..., 6, 12, 24. Resamples the data to make it fit in bins of that size to create
the heatmap

Correlation plot

Note that in this case it only makes sense to put one trace. If we define "device": "all" , then "separate_device_plots": true

•

•

•

12.1.3Json task description

- 213/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Note that in this case it only makes sense to put two traces, in the same subplot.

formatting :

jpkind : type as defined in sns.jointplot documentation, to choose from { “scatter” | “reg” | “resid” | “kde” | “hex”

Scatter plot matrix

The big brother of the correlation plot :

"1" : {"plot_type": "correlation_plot",
 "plotting_library": "matplotlib",
 "data": {"test": "TEST_1",
 "traces": {"1": {"device": "5261",
 "channel" : "NOISE_A",
 "subplot": 1},
 "2": {"device": "5262",
 "channel": "TEMP",
 "subplot": 1}}},
 "options": {"show_plot": True,
 "separate_device_plots": false,
 "export_path": "/Users/macoscar/Desktop",
 "file_name": "plot_corr",
 "target_raster": '10Min',
 "min_date": None,
 "max_date": None},
 "formatting": {"jpkind": 'scatter',
 "title": "Magnificent plot",
 "xrange": [0, 100],
 "yrange": [0, 40],
 "grid": True,
 "height": 10,
 "width": 15}
 }

•

•

12.1.3Json task description

- 214/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://seaborn.pydata.org/generated/seaborn.jointplot.html

12.1.3Json task description

- 215/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Coherence plot

This plot it's used to plot the coherence between x and y. Coherence is the normalized cross spectral density. More info
here:

"1" : {"plot_type": "scatter_matrix",
 "plotting_library": "matplotlib",
 "data": {"test": "TEST_1",
 "traces": {"1": {"device": "5262",
 "channel" : "GB_2W",
 "subplot": 1},
 "2": {"device": "5262",
 "channel": "TEMP",
 "subplot": 1},
 "3": {"device": "5262",
 "channel": "HUM",
 "subplot": 1}}},
 "options": {"show_plot": True,
 "separate_device_plots": False,
 "export_path": "/Users/macoscar/Desktop",
 "file_name": "plot_scatter",
 "target_raster": '10Min',
 "min_date": None,
 "max_date": None},
 "formatting": {"title": "Magnificent plot",
 "grid": True,
 "height": 4,
 "width": 4}
 }

12.1.3Json task description

- 216/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.cohere.html

Violin plot

"1" : {"plot_type": "coherence_plot",
 "plotting_library": "matplotlib",
 "data": {"test": "TEST_1",
 "traces": {"1": {"device": "5262",
 "channel" : "GB_2W",
 "subplot": 1},
 "2": {"device": "5262",
 "channel": "TEMP",
 "subplot": 1}}},
 "options": {"show_plot": True,
 "separate_device_plots": False,
 "export_path": "/Users/macoscar/Desktop",
 "file_name": "plot_coherence",
 "target_raster": '10Min',
 "min_date": None,
 "max_date": None},
 "formatting": {"title": "Magnificent plot",
 "grid": True,
 "height": 10,
 "width": 15}
 }

12.1.3Json task description

- 217/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

This plot shows the signal distribution.

12.1.3Json task description

- 218/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

"1" : {"plot_type": "violin",
 "plotting_library": "matplotlib",
 "data": {"test": "TEST_1",
 "traces": {"1": {"device": "5262",
 "channel" : "DALLAS_TEMP",
 "subplot": 1},
 "2": {"device": "5262",
 "channel" : "HUM",
 "subplot": 1},
 "3": {"device": "5262",
 "channel" : "TEMP",
 "subplot": 1},
 "4": {"device": "5262",
 "channel" : "GB_2W",
 "subplot": 1},
 "5": {"device": "5262",
 "channel" : "GB_2A",
 "subplot": 1},
 "6": {"device": "5262",
 "channel" : "GB_3W",
 "subplot": 1}}},
 "options": {"show_plot": True,
 "separate_device_plots": False,
 "export_path": "/Users/macoscar/Desktop",
 "file_name": "plot_violin",
 "target_raster": '10Min',
 "min_date": None,
 "max_date": '2019-01-03',
 "relative": False,
 "ylabel": {1: "External temperature",
 2: "Humidity (%RH)",
 3: "Temperature (degC)",
 4: "Wir",
 5: "Wor",
 6: "Wur"},
 "yrange": {1: [0, 90],
 2: [300, 2000],
 3: [0, 60],
 4: [0, 60],
 5: [0,60],
 6: [0,60]},
 },
 "formatting": {"title": "Magnificent plot",
 "grid": True,
 "height": 10,
 "width": 15}
 }

12.1.3Json task description

- 219/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

12.2 Creating Interfaces

12.2.1 Custom dashboards and notifications

When working on deployments that involve multiple devices a community might face the need to create their own page
where the sensors’ data is updated on real time. Also, it is sometimes useful to trigger notifications on different services.

This can help to look at data from different spots simultaneously and also to create a sense of community among the
devices’ owners. This feature can be easily built using Freeboards or Node-RED, both online free visual tool that supports
the creation of dashboards. Additionally, [Node-RED] can be used to create notifications on common services such as
Twitter or Telegram.

Node RED

Node-RED is an open-source visual tool that enabled the wiring of hardware devices, APIs and online services. The tool can
be easily installed on any local computer or it can be used directly on the Smart Citizen infrastructure.

Freeboard

12.2.2 Talk to the world

Due to their unobtrusive nature, sensor technologies like Smart Citizen may easily blend in the background of users’
attention. To bring the sensed data back to the surface and support sensemaking and awareness processes, it is possible to
use the SCKs’ data to trigger actions on the physical environment.

A Raspberry Pi is probably the best tool to do so, since it can also be a suitable tool to engage people with coding, creating
new internet of things (IoT) and physical computing applications.

Raspberry Pi

Blink example

This example presents a small Python script that can turn two lights based on the real-time temperature data from a remote
sensor on the Smart Citizen platform.

We will implement a simple logic: When temperature on the remote sensor reaches 25 degrees then turn the first light on.
When temperature is below 25 degrees turn the first light off and then turn the other light on. We will use the Raspberry Pi
GPIOs (General Purpose Input Outputs)_ to connect to LED’s that represent the status of our sensor.

You can find the following examples in the toolkit repository:

Trigger notifications

Device dashboard

Examples

•

•

This is a work in progress. You can find a demo here

WIP

12.2Creating Interfaces

- 220/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://freeboard.io/
http://nodered.org/
http://nodered.org/
http://nodered.org/docs/getting-started/installation
https://github.com/fablabbcn/smartcitizen-toolkit/blob/master/nodered-examples/nodered-smartcitizen-battrigger.json
https://github.com/fablabbcn/smartcitizen-toolkit/tree/master/nodered-examples
https://github.com/fablabbcn/smartcitizen-toolkit/blob/master/freeboard-examples/freeboard-manchesternoise.json

The sensor box

The Sensor Box is display installation aimed at engaging citizens to discuss about data on the public space. The
installation was built by the Making Sense Barcelona community champions to talk about noise problems affecting
neighbours around the Plaça del Sol area in Barcelona. However the installation was built from the ground up to be
replicable ad easy to built in oder Fab Labs worldwide. This aims at creating a tool communities can built to engage citizens
to discuss about issues by using the data provided by the Smart Citizen Kit.

We will need to wire the two LED’s following the schematic below:

Once we have the Raspberry Pi running and connected to the internet we will need to save the Python script below on the desktop:

Finally, open the Terminal app and run:

Step-by-step

Smart Citizen Examples for the Raspberry Pi
#
http://smartcitizen.me
#
Trigger 2 LEDs depending on the temperature
For more information on the LEDs connection check: https://learn.sparkfun.com/tutorials/raspberry-gpio
For more information on the SmartCitizen API check: http://developer.smartcitizen.me
#
import RPi.GPIO as GPIO
import json, requests, time
GPIO.setup(18, GPIO.OUT)
GPIO.setup(23, GPIO.OUT)
while True:
r = requests.get(‘https://api.smartcitizen.me/v0/devices/3292’)
data = json.loads(r.text)
for sensor in data[‘data’][‘sensors’]:
if sensor[‘description’] == ‘Temperature’: #CO, NO2...
print sensor[‘value’]
if sensor[‘value’] > 25:
print ‘LED ON’
GPIO.output(18, GPIO.HIGH)
GPIO.output(23, GPIO.LOW)
else:
print ‘LED OFF’
GPIO.output(18, GPIO.LOW)
GPIO.output(23, GPIO.HIGH)
time.sleep(15) #Update every 15 seconds

pi@raspberrypi ~ $ cd Desktop
pi@raspberrypi Desktop $ sudo python smartcitizen-led.py

12.2.2Talk to the world

- 221/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

The device comprises a wooden box equipped with a Smart Citizen Kit to which was a 5 meter long LED strip has been
attached. Participants can press a button on the box to trigger the noise sensor. The original installation was battery
powered but it can also be plugged to simplify the design and cost.

Visit the public displays repository and download the directory.

The /built folder contains the files for building the installation: NoiseBox.blend the whole installation design in blender, CableClip.stl and Hinge.stl 3D
printed parts for the cable clips and hinges used, Acrylic.dxf the acrylic cover lasercut file and noiseBoxSchematic.fzz the wiring diagram for the
installation.

The /code folder contains the Arduino files to drive the installation. The Arduino sketch reads sensor data from an SCK 1.5 over the I2C bus when a user
presses the button display the result on a WS2811 addressable LED strip. This code was originally created to display reading from the noise sensor in
dB but it can quickly be changed to support any other sensor. It runs on an Arduino UNO but any compatible board can be used.

Step-by-step

Check out the Making Sense D2.3 Smart Citizen Toolkit report and Making Sense D.24 Smart Citizen Toolkit report updates for more examples!

12.2.2Talk to the world

- 222/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-toolkit/tree/master/public-displays
http://making-sense.eu/wp-content/uploads/2016/08/Making-Sense-D23-Smart-Citizen-Toolkit.pdf
http://making-sense.eu/wp-content/uploads/2017/09/Making-Sense-D2.4-Documentation-on-Toolkit-add-ons.pdf

12.3 Model your sensor data
In this section, we will detail how to develop models for our sensors. We will try two different approaches for model
calibration:

Ordinary Least Squares (OLS): based on the statsmodels package, the model is able to ingest an expression referring to
the kit's available data and perform OLS regression over the defined training and test data

Machine Learning (LSTM): based on the keras package using tensorflow in the backend. This framework can be used to
train larger collections of data, among others:

Robust to noise

Learn non-linear relationships

Aware of temporal dependence

12.3.1 Ordinary Least Squares example

Let's delve first into an OLS example.

•

•

•

•

•

We will need to load the data first, for this, check the guides to organise the data and to load it

Load some data first

You can follow this example using this notebook

Info

from src.models.model import model_wrapper

Input model description
model_description_ols = {"model_name": "OLS_UCD",
 "model_type": "OLS",
 "model_target": "ALPHASENSE",
 "data": {"train": {"2019-03_EXT_UCD_URBAN_BACKGROUND_API": {"devices": ["5262"],
 "reference_device": "CITY_COUNCIL"}},
 "test": {"2019-03_EXT_UCD_URBAN_BACKGROUND_API": {"devices": ["5565"],
 "reference_device": "CITY_COUNCIL"}},
 "features": {"REF": "NO2_CONV",
 "A": "GB_2W",
 "B": "GB_2A",
 "C": "HUM"},
 "data_options": {"frequency": '1Min',
 "clean_na": True,
 "clean_na_method": "drop",
 "min_date": None,
 "frequency": "1Min",
 "max_date": '2019-01-15'},
 },
 "hyperparameters": {"ratio_train": 0.75},
 "model_options": {"session_active_model": True,
 "show_plots": True,
 "export_model": False,
 "export_model_file": False,
 "extract_metrics": True}
 }

Check the guide on batch analysis for a definition of each parameter.

More info

12.3Model your sensor data

- 223/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://www.statsmodels.org/stable
https://keras.io/
https://www.tensorflow.org/
https://github.com/fablabbcn/smartcitizen-iscape-data/blob/master/examples/model_creation.ipynb

We have to keep at least the key REF within the "features" , but the rest can be renamed at will. We can also input
whichever formula_expression for the model regression in the following format:

Which converts to:

REF = A + log(B)

We can also define the ratio between the train and test dataset and the minimum dates to use within the datasets (globally):

If we run this cell, we will perform model calibration, with the following output:

This output brings a lot of information. First, we find what the dependent variable is, in our case always 'REF' . The type of
model used and some general information is shown below that.

"expression" : 'REF ~ A + np.log(B)'

min_date = '2018-08-31 00:00:00'
max_date = '2018-09-06 00:00:00'

Important that this is a float, don't forget the .
"hyperparameters": {"ratio_train": 0.75}

 OLS Regression Results
==
Dep. Variable: REF R-squared: 0.676
Model: OLS Adj. R-squared: 0.673
Method: Least Squares F-statistic: 197.5
Date: Thu, 06 Sep 2018 Prob (F-statistic): 1.87e-135
Time: 12:25:17 Log-Likelihood: 1142.9
No. Observations: 575 AIC: -2272.
Df Residuals: 568 BIC: -2241.
Df Model: 6
Covariance Type: nonrobust
==
 coef std err t P>|t| [0.025 0.975]
--
Intercept -3.7042 0.406 -9.133 0.000 -4.501 -2.908
A 0.0011 0.000 2.953 0.003 0.000 0.002
np.log(B) -3.863e-05 7.03e-06 -5.496 0.000 -5.24e-05 -2.48e-05

==
Omnibus: 7.316 Durbin-Watson: 0.026
Prob(Omnibus): 0.026 Jarque-Bera (JB): 10.245
Skew: -0.076 Prob(JB): 0.00596
Kurtosis: 3.636 Cond. No. 4.29e+05
==

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 4.29e+05. This might indicate that there are
strong multicollinearity or other numerical problems.

12.3.1Ordinary Least Squares example

- 224/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

More statistically important information is found in the rest of the output. Some key data:

R-squared and adjusted R-squared: this is our classic correlation coefficient or R . The adjusted one aims to correct the
model overfitting by the inclusion of too many variables, and for that introduces a penalty on the number of variables
included

Below, we can find a summary of the model coefficients applied to all the variables and the P>|t| term, which indicates the
significance of the term introduced in the model

Model quality diagnostics are also indicated. Kurtosis and skewness are metrics for determining the distribution of the
residuals. They indicate how the residuals of the model resemble a normal distribution. Below, we will review more on
diagnosis plots. The Jarque Bera test indicates if the residuals are normally distributed (the null hypothesis is a joint
hypothesis of the skewness being zero and the excess kurtosis being zero), and a value of zero indicates that the data is
normally distributed. If the Jarque Bera test is valid (in the case above it isn't), the Durbin Watson is applicable in order to
check for autocorrelation of the residuals (meaning that the residuals of our model are related among themselves and that
we haven't captured some characteristics of our data with the tested model).

Finally, there is a warning at the bottom indicating that the condition number is large. It suggests we might have
multicollinearity problems in our model, which means that some of the independent variables might be correlated among
themselves and that they are probably not necessary.

Our function also depicts the results in a graphical way for us to see the model itself. It will show the training and test
datasets (as Reference Train and Reference Test respectively), and the prediction results. The mean and absolute
confidence intervals for 95% confidence are also shown:

• 2

•

•

12.3.1Ordinary Least Squares example

- 225/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://en.wikipedia.org/wiki/Jarque%E2%80%93Bera_test

Now we can look at some other model quality plots. If we run the cell below, we will obtain an adaptation of the summary
plots from R:

Let's review the output step by step:

Residual vs Fitted and Scale Location plot: these plots represents the model heteroscedasticity , which is a
representation of the residuals versus the fitted values. This plot is helpful to check if the errors are distributed
homogeneously and that we are not penalising high, low, or other values. There is also a red line which represents the
average trend of this distribution which, we want it to be horizontal. For more information visit here and here. Clearly, in
this model we are missing something:

Normal QQ: the qq-plot is a representation of the kurtosis and skewness of the residuals distribution. If the data were well
described by a normal distribution, the values should be about the same, i.e.: on the diagonal (red line). For example, in our
case the model presents a deviation on both tails, indicating skewness. In general, a simple rubric to interpret a qq-plot is
that if a given tail twists off counterclockwise from the reference line, there is more data in that tail of your distribution than
in a theoretical normal, and if a tail twists off clockwise there is less data in that tail of your distribution than in a
theoretical normal. In other words:

if both tails twist counterclockwise we have heavy tails (leptokurtosis),

if both tails twist clockwise, we have light tails (platykurtosis),

if the right tail twists counterclockwise and the left tail twists clockwise, we have right skew

if the left tail twists counterclockwise and the right tail twists clockwise, we have left skew

from linear_regression_utils import modelRplots
%matplotlib inline

modelRplots(model, dataTrain, dataTest)

•

•

•

•

•

•

12.3.1Ordinary Least Squares example

- 226/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://en.wikipedia.org/wiki/Heteroscedasticity
https://stats.stackexchange.com/questions/76226/interpreting-the-residuals-vs-fitted-values-plot-for-verifying-the-assumptions
https://stats.stackexchange.com/questions/52089/what-does-having-constant-variance-in-a-linear-regression-model-mean/52107#52107

Residuals vs Leverage: this plot is probably the most complex of them all. It shows how much leverage one single point
has on the whole regression. It can be interpreted as how the average line that passes through all the data (that we are
calculating with the OLS) can be modified by 'far' points in the distribution, for example, outliers. This leverage can be
seen as how much a single point is able to pull down or up the average line. One way to think about whether or not the
results are driven by a given data point is to calculate how far the predicted values for your data would move if your model
were fit without the data point in question. This calculated total distance is called Cook's distance. We can have four
cases (more information from source, here)

everything is fine (the best)

high-leverage, but low-standardized residual point

low-leverage, but high-standardized residual point

high-leverage, high-standardized residual point (the worst)

•

•

•

•

•

12.3.1Ordinary Least Squares example

- 227/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://stats.stackexchange.com/questions/58141/interpreting-plot-lm#65864

In this case, we see that our model has some points with higher leverage but low residuals (probably not too bad) and that
the higher residuals are found with low leverage, which means that our model is safe to outliers. If we run this function
without the filtering, some outliers will be present and the plot turns into:

Finally, we can export our model and generate some metrics to evaluate the results.

12.3.1Ordinary Least Squares example

- 228/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

12.3.2 Machine learning example

Machine learning algorithms promise a better representation of the sensor's data, being able to learn robust non-linear
models and sequential dependencies. For that reason, we have implemented toolset based on keras with Tensorflow
backend, in order to train sequential models .

Output:

This will also output some nice plots for visually checking our model performance:

3

model_description_rf = {"model_name": "RF_UCD",
 "model_type": "RF",
 "model_target": "ALPHASENSE",
 "data": {"train": {"2019-03_EXT_UCD_URBAN_BACKGROUND_API": {"devices": ["5262"],
 "reference_device": "CITY_COUNCIL"}},
 "test": {"2019-03_EXT_UCD_URBAN_BACKGROUND_API": {"devices": ["5565"],
 "reference_device": "CITY_COUNCIL"}},
 "features": {"REF": "NO2_CONV",
 "A": "GB_2W",
 "B": "GB_2A",
 "C": "HUM"},
 "data_options": {"target_raster": '1Min',
 "clean_na": True,
 "clean_na_method": "drop",
 "min_date": None,
 "frequency": "1Min",
 "max_date": '2019-01-15'},
 },
 "hyperparameters": {"ratio_train": 0.75,
 "min_samples_leaf": 2,
 "max_features": None,
 "n_estimators": 100,
 "shuffle_split": True},
 "model_options": {"session_active_model": True,
 "show_plots": True,
 "export_model": False,
 "export_model_file": False,
 "extract_metrics": True}
 }

Using TensorFlow backend.
...
Beginning Model RF_UCD
Model type RF
Preparing dataframe model for test 2019-03_EXT_UCD_URBAN_BACKGROUND_API
Data combined successfully
Creating models session in recordings
Dataframe model generated successfully
Training Model RF_UCD...
Training done
Variable: HUM_5262 Importance: 0.4
Variable: GB_2W_5262 Importance: 0.31
Variable: GB_2A_5262 Importance: 0.3
Calculating Metrics...
Metrics Summary:
Metric Train Test
avg_ref 16.648 15.861
avg_est 16.666 16.000
sig_ref 11.438 10.584
sig_est 9.493 9.404
bias 0.019 0.139
normalised_bias 0.002 0.013
sigma_norm 0.830 0.888
sign_sigma -1.000 -1.000
rsquared 0.799 0.879
RMSD 5.124 3.677
RMSD_norm_unb 0.453 0.351
No specifics for RF type
Preparing devices from prediction
Channel 5262_RF_UCD prediction finished

12.3.2Machine learning example

- 229/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://keras.io/
https://www.tensorflow.org/

And some extras about variable importance:

12.3.2Machine learning example

- 230/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

12.3.3 Model comparison

Here is a visual comparison of both models:

12.3.3Model comparison

- 231/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

It is very difficult though, to know which one is performing better. Let's then evaluate and compare our models. In order to
evaluate it's metrics, we will be using the following principles :

Linear correlation Coefficient A measure of the agreement between two signals:

R = {{1 \over N} \sum_{i=0}^n (m_n-\overline m)(r_n-\overline r) \over \sigma_m\sigma_r}

The correlation coefficient is bounded by the range -1 \le R \le 1. However, it is difficult to discern information about the
differences in amplitude between two signals from R alone.

Normalized standard deviation A measure of the differences in amplitude between two signals: $$ \sigma * = {\sigma_m
\over \sigma_r} $$

unbiased Root-Mean-Square Difference A measure of how close the modelled points fall to teach other:

RMSD' = \Bigl({1 \over N} \sum_{n=1}^N [(m_n - \overline m)-(r_n - \overline r)]^2 \Bigr)^{0.5}

Potential Bias Difference between the means of two fields: $$ B = \overline m - \overline r $$ Total RMSD A measure of the
average magnitude of difference: $$ RMSD = \Bigl({1 \over N} \sum_{n=1}^N (m_n - r_n)^2 \Bigr)^{0.5} $$

12

In all of the expressions below, the letter m indicates the model field, r indicates the reference field. Overbar is average and \sigma is the standard
deviation.

Info

12.3.3Model comparison

- 232/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

In other words, the unbiased RMSD (RMSD') is equal to the total RMSD if there is no bias between the model and the
reference fields (i.e. B = 0). The relationship between both reads:

RMSD^2 = B^2 + RMSD'^2

In contrast, the unbiased RMSD may be conceptualized as an overall measure of the agreement between the aplitude
(\sigma) and phase (\phi) of two temporal patterns. For this reason, the correlation coefficient (R), normalised standard
deviation (\sigma*), and unbiased RMSD are all referred to as patern statistics, related to one another by:

RMSD'^2 = \sigma_r^2 + \sigma_m^2 - 2\sigma_r\sigma_mR

Normalized and unbiased RMSD If we recast in standard deviation normalized units (indicated by the asterisk) it becomes:

RMSD'^* = \sqrt { 1 + \sigma*^2 - 2\sigma*R}

NB: the minimum of this function occurrs when \sigma* = R.

Normalized bias Gives information about the mean difference but normalized by the \sigma* $$ B* = {\overline m - \overline
r \over \sigma_r} $$

Target diagrams The target diagram is a plot that provides summary information about the pattern statistics as well as the
bias thus yielding an overview of their respective contributions to the total RMSD. In a simple Cartesian coordinate system,
the unbiased RMSD may serve as the X-axis and the bias may serve as the Y-axis. The distance between the origin and the
model versus observation statistics (any point, s, within the X,Y Cartesian space) is then equal to the total RMSD. If all is
normalized by the \sigma_r, the distance from the origin is again the standard deviation normalized total RMSD:

RMSD^{*2} = B^{*2}+RMSD^{*'2}

The resulting target diagram then provides information about:

whether the \sigma_m is larger or smaller thann the \sigma_r

whether there is a positive or negative bias

1

•

•

12.3.3Model comparison

- 233/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Image Source: Jolliff et al.

Any point greater than RMSD*=1 is to be considered a poor performer since it doesn't offer improvement over the time
series average.

Interestingly, the target diagram has no information about the correlation coefficient R, but some can be inferred, knowing
that all the points within the RMSD* <1 are positively correlated (R>0), although, in it is shown that a circle marker with
radius M_{R1}, means that all the points between that marker and the origin have a R coefficient larger than R1, where:

M_{R1} = min(RMSD*') = \sqrt {1+R1^2-2R1^2}

12.3.4 Results

Let's now compare both models with the target diagram:

1

1

12.3.4Results

- 234/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Output:

Here, every point that falls inside the yellow circle, will have an R over 0.7, and so will be the red and green for R over 0.5
and 0.9 respectively. We see that only one of our models performs well in that sense, which is the training dataset of the
OLS. However, this dataset performs pretty badly in the test dataset, being the LSTM options much better. This target

from src.visualization.visualization import targetDiagram
%matplotlib inline
models = dict()

group = 0
for model in [ols_model, rf_model]:
 for dataset in ['train', 'validation']:
 if dataset in model.metrics.keys():
 models[model.name + '_' + dataset] = model.metrics[dataset]
 models[model.name + '_' + dataset]['group'] = group

targetDiagram(models, True, 'seaborn-talk')

2 2

12.3.4Results

- 235/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

diagram offers information about how the hyperparameters affect our networks. For instance, increasing the training epochs
from 100 to 200 does not affect greatly on model performance, but the effect of filtering the data beforehand to reduce the
noise shows a much better model performance in both, training and test dataframe.

12.3.5 Export the models

Let's now assume that we are happy with our models. We can now export them:

Output:

And in our directory:

12.3.6 References

Engineering statistics handbook

Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment (Jolliff et al.)

Machine learning mastery

ols_model.export('directory')
rf_model.export('directory')

Saving metrics
Saving hyperparameters
Saving features
Model included in summary

➜ models ls -l
RF_UCD_features.sav
RF_UCD_hyperparameters.sav
RF_UCD_metrics.sav

If you want to save the model file into the disk, change the option "export_model": False, to True ! Be careful though, it can take quite a lot of
space. If you just want to keep the model to test in the current session, it is best to just use "session_active_model": True, .

Save the model file

1.

2.

3.

12.3.5Export the models

- 236/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://www.itl.nist.gov/div898/handbook/mpc/section5/mpc52.htm
https://www.sciencedirect.com/science/article/pii/S0924796308001140
https://machinelearningmastery.com

12.4 Debug the firmware

12.4.1 Introduction

Sometimes (many times actually), our code won't do what we want it to do and we need to take a look at what it's doing. By
using a debugger we will be able to see what is going on inside another program while it executes or even crashes. This is
fairly straight forward when you code for a modern day computer, since most IDEs have a proper interface integrated for it.
However, debugging a chip like the SAMD21 can sometimes be tricky and here is where it's interesting to use a debugging
kit.

To keep it simple: our final target is to be able to interact with the SAMD21 (or the chip) while it's executing the program
and tell it to pause the execution, give us the value of some variables and then continue. We will release a fairly extensive
report with documentation on this process, but for those interested in reading an overview on how to debug, this post can be
a short introduction.

So, here we go! The first item we need is the Open On-Chip Debugger (OpenOCD) which provides debugging with the
assistance of a debug adapter. This adapter is a small hardware module which helps provide the right kind of electrical
signaling to the target being debugged. These are required since the debug host, on which OpenOCD runs (i.e. your
computer, a Raspberry PI...) won’t usually have native support for such signaling, or the connector needed to hook up to the
target.

12.4Debug the firmware

- 237/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://openocd.org/
http://openocd.org/

These adapters are sometimes packaged as discrete dongles, which may generically be called hardware interface dongles
(and are quite expensive). Some development boards also integrate them directly, which may let the development board
connect directly to the debug host over USB (and sometimes also to power it over USB, like the Arduino Genuino Zero). In
the case of the Smart Smart Citizen Kit, we have a SWD Adapter that supports Serial Wire Debug signaling to
communicate with the ARM core. In our approach, using a complete open toolchain, OpenOCD is be running on a
Raspberry Pi, and communicating with the SCK's SWD through the GPIO pins of the Pi.

Finally, to be able to actually see what is going on inside our firmware while it executes, we need something that is able
to read and understand the machine code and hand it over to a human understandable interface. This is where GDB kicks
in and helps us by:

Starting our program, specifying anything that might affect its behavior.

Make our program stop on specified conditions.

Examine what has happened when our program has stopped.

Change things in our program, so we can experiment with correcting the effects of one bug and go on to learn about
another.

GDB and OpenOCD will be running in a Raspberry Pi hooked up to the SWD interface of the SCK, and we will see what's
going on in them from our computer's terminal via SSH. Fairly simple, right? Now, we can make some changes to our code,
make GDB flash it to the SCK and keep debugging in a completely open toolchain!

•

•

•

•

12.4.1Introduction

- 238/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://store.arduino.cc/genuino-zero
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/

12.4.2 Debugger setup using a Raspberry Pi

First download and copy Raspbian Lite to your SDcard, here are the installation docs.

Add wifi configuration

Create a file name wpa_supplicant.conf on the /boot partition of the SD card, the content of this file should looks like
this:

Replacing wifi_ssid and wifi_password with your actual wifi network information. The wpa_supplicant.conf file will be
copied to /etc/wpa_supplicant/ directory automatically once the Raspberry Pi is booted up.

Enable SSH server.

SSH access is disabled as default for security reasons. To enable the SSH server when Raspberry Pi is booted up for the
first time: create a file called ssh with no file extension and no contents, and copy it to the /boot partition on the SD
card.

Find your raspberry on the network

In order to find a raspberry pi over the network we can use commands like these:

Linux

Mac

SSH login without password:

If you have never generated a RSA key: ssh-keygen without passphrase

Copy the key to the Raspberry: ssh-copy-id -i ~/.ssh/id_rsa.pub raspi-address

Once booted, it will connect to the network. The command above (MY_IP...) finds it and logs into it via SSH.

Once you are logged to your raspberry pi and connected to the internet, do a system upgrade:

Install some dependencies:

Openocd installation

Clone openocd repository and compile:

•

•

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1

network={
 ssid="wifi_ssid"
 psk="wifi_password"
}

•

•

MY_IP_RANGE=$(ip addr | grep 'state UP' -A2 | tail -n1 | awk '{print $2}') && nmap -sn $MY_IP_RANGE && IP=$(arp -na | grep b8:27:eb | grep -Eo '[0-9]{1,3}\.[0-9]
{1,3}\.[0-9]{1,3}\.[0-9]{1,3}') && ssh $IP;

MY_RANGE=$(ip addr | grep "UP" -A3 | grep '192' -A0 | awk '{print $2}') && nmap -sn $MY_RANGE && arp -na | grep b8:27:eb

•

•

•

sudo apt-get install rpi-update
sudo rpi-update
sudo apt-get update && sudo apt-get dist-upgrade

sudo apt-get install git autoconf libtool make pkg-config libusb-1.0-0 libusb-1.0-0-dev telnet sshfs

•

12.4.2Debugger setup using a Raspberry Pi

- 239/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/documentation/installation/installing-images/README.md

The list of interfaces that openOCD can use is under: /usr/local/share/openocd/scripts/interface.

In order to use the SWD connector that the SCK features, by using Bit Banging, we connect it directly to the Raspberry Pi
GPIOs:

git clone git://git.code.sf.net/p/openocd/code openocd-code
cd openocd-code
./bootstrap
./configure --enable-sysfsgpio --enable-bcm2835gpio
make
sudo make install

12.4.2Debugger setup using a Raspberry Pi

- 240/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://www.arm.com/products/system-ip/debug-trace/coresight-soc-components/serial-wire-debug.php

Running OpenOCD on the raspberry pi

Once you are logged into the raspberry Pi you need a openOCD config file to start (ej. sck.cfg) with this content:

You can store this file in OpenOCD scripts dir so it will auto find it

and then run the OpenOCD server with:

Then you can connect to OpenOCD, if you want to connect from an external computer, replace 127.0.0.1 with your
Raspberry Pi IP address.

source [find interface/raspberrypi2-native.cfg]
transport select swd

set CHIPNAME at91samd21g18
source [find target/at91samdXX.cfg]

adapter_nsrst_delay 100
adapter_nsrst_assert_width 100

init
targets
reset halt

sudo mv sck.cfg /usr/local/share/openocd/scripts/

sudo openocd -f sck.cfg

12.4.2Debugger setup using a Raspberry Pi

- 241/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

12.4.3 Using OpenOCD remotely from other computer

We need to give the OpenOCD server access to your project files that are remotely stored. To do this you can mount your
working directory remotely on the Raspberry Pi via SSH:

Then you can connect to OpenOCD from your computer with:

Uploading Arduino original bootloader

Get the bootloader file here and build it.

Connect to OpenOCD server and run:

If you don't see any error youre done!

Uploading SCK Firmware

Install platformio, download and build SCK firmware

Connect to OpenOCD server and run:

telnet 127.0.0.1 4444

On a arduino zero go to the directory where the *.cfg is and:

Example

openocd -f arduino_zero.cfg
Open On-Chip Debugger 0.10.0
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.org/doc/doxygen/bugs.html
Info : auto-selecting first available session transport "swd". To override use 'transport select <transport>'.
none separate
adapter speed: 400 kHz
cortex_m reset_config sysresetreq
Info : CMSIS-DAP: SWD Supported
Info : CMSIS-DAP: Interface Initialised (SWD)
Info : CMSIS-DAP: FW Version = 02.01.0157
Info : SWCLK/TCK = 1 SWDIO/TMS = 1 TDI = 1 TDO = 1 nTRST = 0 nRESET = 1
Info : CMSIS-DAP: Interface ready
Info : clock speed 400 kHz
Info : SWD DPIDR 0x0bc11477
Info : at91samd21g18.cpu: hardware has 4 breakpoints, 2 watchpoints

ssh pi@raspi_address
pi$ mkdir working_dir
pi$ sshfs user@computer_address:working_path working_dir
pi$ cd working_dir
pi$ sudo openocd -f sck.cfg

telnet raspi_address 4444

•

•

reset halt
at91samd bootloader 0
at91samd chip-erase
program samd21_sam_ba.bin verify
at91samd bootloader 8192
reset run

•

•

reset halt
flash write_image firmware.bin 8192
verify_image firmware.bin 8192
reset run
reset run

12.4.3Using OpenOCD remotely from other computer

- 242/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/arduino/ArduinoCore-samd/tree/master/bootloaders/zero

12.4.4 GDB

General description

The purpose of a debugger such as GDB is to allow you to see what is going on “inside” another program while it executes
—or what another program was doing at the moment it crashed.

GDB can do four main kinds of things (plus other things in support of these) to help you catch bugs in the act: * Start your
program, specifying anything that might affect its behavior. * Make your program stop on specified conditions. * Examine
what has happened, when your program has stopped. * Change things in your program, so you can experiment with
correcting the effects of one bug and go on to learn about another.

Debugging session with Raspberry Pi as the OpenOCD server

Once your raspberry pi is setup with above instructions you can just do:

If you are using platformio, you need to modify the compiling option to avoid optimisation with -0g message to the compiler.
In case you are not using platformio, activate verbose compiling output at Arduino IDE and find your compiled .elf directory.

Now we are all set and ready to go. The debugger is waiting for instructions on the execution, which we detail below.

GDB commands

All commands in gdb during debugging are detailed in the GDB guide, chapter GDB commands in detail (continue and
stepping)

An extract of some useful commands are detailed below:

ssh pi@RaspberryAddress sudo openocd -f sck.cfg &
cd /platformio_project/path
arm-none-eabi-gdb ./pioenvs/zeroUSB/firmware.elf
(gdb) target remote RaspberryAddress:3333
(gdb) monitor reset run

[env:zeroUSB]
platform = atmelsam
board = zeroUSB
framework = arduino
build_flags = -Og

Quick handy instructions inside GDB environment 1. (gdb) appears in every line and you don't have to type it each time 2. In case you need to exit
GDB, just type in quit , but remember always killing the process before, should you have a target running

3. RET repeats the previous command

Info

(gdb) kill
(gdb) quit

12.4.4GDB

- 243/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://sourceware.org/gdb/onlinedocs/gdb/Continuing-and-Stepping.html
https://sourceware.org/gdb/onlinedocs/gdb/Continuing-and-Stepping.html

CONTINUING AND STEPPING

continue [ignore-count]

Resumes program execution until next breakpoint. [ignore-count] argument allows to specify a further number of times
to ingore a breakpoint.

step count

Continues running your program until control reaches a different source line, only availabe for source lines and functions
compiled with debugging information. count is optional and states the number of steps to be performed before stopping,
if no breakpoint arrives earlier.

next [count]

Continue to the next source line without going into functions. It has the same functionality as step, but it stays in the
same stack frame. count works as in step count . As well, it understands jumps calls as in the end of for loops and
return to the beginning of the loop.

finish

Continue running until just after function in the selected stack frame returns.

until

Has the same behaviour as step , but it ignores the jumps between lines due to loops (for, whiles, etc), continuing to the
next source code with incremental line number.

BREAKPOINTS

info breakpoints

Retrieve information about breakpoints

break

•

(gdb) continue
Continuing.

Breakpoint 1, tick () at src/HOLA.cpp:9
9 void tick() {

•

•

set step-mode on/off sets the behaviour of (gdb) when stepping into a function with no debugging information. In the case of step-mode on , it
inspects the first line of code of the function, whereas on step-mode off it skips the function completely.

Info

•

•

•

(gdb) info breakpoints
Num Type Disp Enb
ress What
1 breakpoint keep y 0x00002140 in tick() at src/HOLA.cpp:9
 breakpoint already hit 15 times

Use the tbreak command instead of break if you want to stop the program once, and then remove the breakpoint. More breakpoint condition options
can be found here you can find

Info

12.4.4GDB

- 244/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://sourceware.org/gdb/current/onlinedocs/gdb/Conditions.html#Conditions
https://sourceware.org/gdb/current/onlinedocs/gdb/Conditions.html#Conditions

watchpoint

Set a watchpoint watchpoint to only stop once a variable has a certain value.

commands

Set a list of actions related to the breakpoint:

delete

Delete a breakpoint

PRINTING / SETTING VARIABLES AND MORE

loop

Read what is around a certain function

print

Retrieve value of a specific variable

set

Set variable to a certain value

•

(gdb) watch timer

Type in info watchpoints to get information about watchpoints.

Info

•

break main.cpp:50
commands
silent
printf "count is %d\n",count
cont
end

•

(gdb) delete 1
(gdb) info breakpoints
No breakpoints or watchpoints.

•

(gdb) l loop
25 //while (!Serial) {
26 //; // wait for serial port to connect. Needed for native USB port only
27 //}
28 }
29
30 void loop() {
31 // put your main code here, to run repeatedly:
32 Serial.println("HOLA");
33 tick();
34 Serial.println(millis());

•

(gdb) print timer
$12 = 2

•

(gdb) set timer = 0

12.4.4GDB

- 245/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://sourceware.org/gdb/current/onlinedocs/gdb/Set-Watchpoints.html#Set-Watchpoints
https://sourceware.org/gdb/current/onlinedocs/gdb/Set-Watchpoints.html#Set-Watchpoints

TARGET COMMANDS (LOAD)

load filename offset

Load it is meant to make filename (an executable) available for debugging on the remote system—by downloading it.
load also records the filename symbol table in GDB, like the add-symbol-file command. The file is loaded at whatever
address is specified in the executable, also into flash memory.

Making changes in the code

Anytime we make a change in the code, we don't need to reload the debugging session. We can easily do so by:

Compile the code: a. Define Shell build in Sublime Text and configure a build sytem with:

Then, everytime you hit Ctrl+B (Cmd+B) and you use your custom build system, it will automatically use this option.

b. Or hit pio run in another terminal located in your project root directory

In gdb, load file. This will reload the file defined at the beginning of your debugging session and upload it to the target

Keep debugging

GDB Console

TUI

GDB has a console GUI option available with the command line option --tui In the upper frame you can see the code that's
being executed.

•

1.

"shell_cmd": "cd .. && pio run"

2.

(gdb) load
Loading section .text, size 0x2e50 lma 0x2000
Loading section .ramfunc, size 0x60 lma 0x4e50
Loading section .data, size 0x110 lma 0x4eb0
Start address 0x2910, load size 12224
Transfer rate: 3 KB/sec, 4074 bytes/write.

3.

12.4.4GDB

- 246/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

GDB INIT FILE

From this example dashboard we can generate a custom .gdbinit file for the SCK which will be placed in the HOME
directory... (ON GOING)

For references about where to locate the .gdbinit and more custom behaviour for gdb in general see here.

GDB from Sublime Text

Setup Platformio project with sublime Text Setup sublimeGDB

12.4.5 Reference

General GDB references and examples

Debugging with GDB - Book

Debugging example from GDB and OpenOCD

Arduino zero example

Would be interesting to generate a custom option for production validation and one for internal debugging purposes

Info

12.4.5Reference

- 247/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/cyrus-and/gdb-dashboard
http://www.dirac.org/linux/gdb/03-Initialization,_Listing,_And_Running.php
http://docs.platformio.org/en/latest/ide/sublimetext.html
http://developers-club.com/posts/270789/
https://sourceware.org/gdb/current/onlinedocs/gdb/Summary.html#Summary
http://openocd.org/doc-release/html/GDB-and-OpenOCD.html#GDB-and-OpenOCD
http://starter-kit.nettigo.eu/2015/debug-sketch-on-arduino-zero-pro-with-gdb-and-openocd/

Additional notes from Platformio configuration

How to set other DEBUG FLAGS

About project configuration with Platformio init

Check here for building an *.ini file with custom build target for debugging and production.

1.

2.

3.

12.4.5Reference

- 248/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://docs.platformio.org/en/latest/projectconf/section_env_debug.html#projectconf-debug-server
http://docs.platformio.org/en/latest/projectconf.html
https://community.platformio.org/t/confusion-surrounding-preprocessor-build-flags-ifdefs-with-cmake-and-clion/2119
https://community.platformio.org/t/confusion-surrounding-preprocessor-build-flags-ifdefs-with-cmake-and-clion/2119

12.5 Downloading the Data
Once you've added your SCK to the platform and it's capturing and sending data correctly, you can interact with the
platform in several ways. Visualizing the data, downloading the data and interacting with the data through the API.

12.5.1 Download Data

If you are interested in use the data captured by your sensors, you can download all the data for later use. To do this, go to
your device page, at the bottom there is a button called DOWNLOAD DATA. You will receive an email with a link to download
your data on CSV format in less than a minute,

12.5.2 API

The Smart Citizen API allows you to request back information from your devices and do incredible things with it.

It is a REST API and it returns the information in JSON format. This means you can easily access the information from any
language like Javascript, PHP, Processing.org, Python, and start doing things with it quickly.

We are working to provide enhanced tutorials on how to interface the API. At the moment you can find some examples on smartcitizen-toolkit
respository

Code examples

12.5Downloading the Data

- 249/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://en.wikipedia.org/wiki/Comma-separated_values
http://developer.smartcitizen.me/
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Json
https://github.com/fablabbcn/smartcitizen-toolkit

12.6 Edit the Firmware
The data board of your SmartSmart Citizen Kit is has two two microcontrollers:

The main one is an Atmel SAMD21, this chip is in charge of all the normal tasks like reading the sensors, saving data,
interacting with the user, etc. For this chip we need two software components the bootloader and the main firmware.

For communications the SCK has an ESP8266 microcontroler with Wifi capabilities, this chip receives instructions from
the SAMD21 via serial port and takes care of publishing the collected data through the network. This chip needs a main
firmware and a filesystem that stores the web pages for the setup mode server.

12.6.1 Development enviroment

The SmartSmart Citizen Kit Firmware is on our repository on github so you will need git software installed.

To build the SmartSmart Citizen Kit firmware you need a linux computer with platformio installed, you don't need the full IDE
installation (Atom). You can follow this instructions to install only the console version.

For bootloader upload you also need OpenOCD somewhere in your PATH. You can use platformIO provided binary, normally
it is located in ~/.platformio/packages/tool-openocd .

12.6.2 Getting the firmware

To get the firmware just run:

The bootloader repository is a submodule of the main firmware so you must do a --recursive clone to get it.

git clone --recursive https://github.com/fablabbcn/smartcitizen-kit-21

12.6Edit the Firmware

- 250/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-kit-21
https://mirrors.edge.kernel.org/pub/software/scm/git/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://platformio.org/
http://docs.platformio.org/en/latest/installation.html#super-quick-mac-linux
http://openocd.org/
https://git-scm.com/book/en/v2/Git-Tools-Submodules

12.6.3 SAMD21 bootloader

If your kit doesn't have the bootloader already flashed (all the kits that we ship come with it) you will need an ATMEL-ICE
programmer. This process can also be done with a Raspberry Pi computer and the proper connector and cables, we are
preparing the documentation for this process.

Connect the Atmel-ICE programmer to the 10 pin SWD connector and to your computer. Power the SCK via USB, you can
use any USB charger or even your computer.

Open a terminal, go to the folder where you cloned the firmware repository and run:

If you have everything connected click any key to continue, you will see a lot of output when compiling, the led on the SCK
should breath in green and you should see an output similar to this:

I you download manually (with the clone or download button on github) you will not get the bootloader code, but you can get it from here.

Info

cd smartcitizen-kit-20
./build.sh boot

12.6.3SAMD21 bootloader

- 251/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/uf2-samdx1/tree/88aa54c1afab2647904aaccbe1a6b960c02fdb24
https://www.digikey.es/en/product-highlight/a/atmel/atmel-ice-programmer-debugger
https://www.adafruit.com/product/2094

You are ready for the next step, just remember to disconnect the Atmel-ICE programmer and connect the SCK to your
computer with a USB cable.

12.6.4 SAMD21 firmware

The bootloader we just flashed allows a very simple way of uploading the SCK firmware based on the UF2 format, when you
double-click the reset button of your kit it will expose a MSD interface to your computer and a new drive will popup where
you can just drag the compiled firmware file (converted to UF2 format).

12.6.4SAMD21 firmware

- 252/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/Microsoft/uf2
https://en.wikipedia.org/wiki/USB_mass_storage_device_class

Build script

You can use the same script used to flash the bootloader (build.sh) that will do everything for you: compile the firmware,
convert the binary to UF2 format and upload it to the kit:

If you haven't already, double-click the reset button of your kit an click any key. If this is your first time building the
software, platformio will take a while installing all the needed dependencies, be patient. If there are no errors you should see
an output similar to this:

./build.sh sam

12.6.4SAMD21 firmware

- 253/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

The script will leave a copy of the compiled software in UF2 format called SAM_firmware.uf2 you can use this file to reflash
your kit without compiling it again.

Manual install

If you want to install the firmware manually (or you had some problem with the build script) just follow this steps:

At the end you should see some output similar to this:

then do:

you should see:

don't worry about the NO DEVICE WAS FLASHED message, we are doing it manually. Now double-click the reset button of
your kit open your favorite file browser and drag the file you just created to the SCK-2.0 drive. The kit will reset and run the
new firmware.

cd sam
pio run

cd ..
tools/uf2conv.py -o SAM_firmware.uf2 sam/.pioenvs/sck2/firmware.bin

12.6.4SAMD21 firmware

- 254/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

12.6.5 ESP8266 firmware

Just like the other parts of the process this is also covered by our build.sh script. So you can just do:

As before, if this is the first time you do it, it will take a while on downloading dependecies and building the firmware.

In this case the upload process is different, since the ESP8266 chip is not connected to the USB interface the data must be
uploadded through the SAMD21 chip. Our upload script takes care of searching for a SCK on the USB bus, sending a
command to the kit so it put's himself in what we call bridge mode (white led) and uploading the firmware. This is the
expected output:

12.6.6 ESP8266 filesystem

This process is very similar to the previous one you just need to add the letters fs, and wait a little longer ;)

Keep in mind that if your computer is not configured to automount new drives you will need to mount your sck manually (as any other USB drive).

Info

./build.sh esp

Sometimes the ESP8266 and the uploader software don't get synced and the upload fails. Normally if you try again it will work.

Info

./build.sh espfs

12.6.5ESP8266 firmware

- 255/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://linuxconfig.org/howto-mount-usb-drive-in-linux
https://github.com/fablabbcn/smartcitizen-kit-21/blob/master/esp/uploadESP.py

12.6.6ESP8266 filesystem

- 256/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

12.7 How to install the framework
The following data analysis framework is a set of tools built on Python 3.7 to help you analyse your data. It can be used with
Jupyter Notebooks or Jupyter Lab, although it is not mandatory.

12.7.1 Prerequisites

We recommend you use these two tools for managing the different versions of the framework and keep it updated.

Download and install git from here

Download and install Anaconda for Python 3.7 from here

12.7.2 Installation

Open your favourite shell on the directory you have your project. (cmd.exe on windows)

Get the repo

Make a directory and clone the repository in it:

Create the environment

Navigate to the cloned repository and create an environment for anaconda. We provide an environment.yml file to help with
the process:

Alternatively, you can open Anaconda Navigator and Import an environment in the Environment section :

1.

2.

➜ mkdir data_analysis
➜ cd data_analysis
➜ git clone https://github.com/fablabbcn/smartcitizen-iscape-data.git
...

The framework is being constantly updated and the only version that will always be up-to-date is in the master branch of the github repository. We do
not recommend to simply download the repository but to clone it with git . If you want to learn more about git and why it can help you in your
projects, check here

Want to stay up-to-date?

➜ cd smartcitizen-iscape-data
➜ smartcitizen-iscape-data git:(master) ✗ conda env create -f environment.yml

12.7How to install the framework

- 257/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://jupyter.org/
https://jupyterlab.readthedocs.io/en/stable/
https://git-scm.com/
https://www.anaconda.com/distribution/
https://github.com/fablabbcn/smartcitizen-iscape-data
https://www.quora.com/What-is-Git-and-why-should-I-use-it

Finish it up

The code in the framework is managed as internal dependencies. To activate this, you can run:

Additional commands to install jupyter lab extensions are given in the .dotfile :

With an optional one for plotly chart studio:

You can run it by:

12.7.3 Run

You should now be ready to go! You can verify the installation by either running this command:

Or opening Anaconda Navigator:

Different platforms (Windows, Mac, Linux...) may have different dependencies for each package. We have tried to make the environment as clean as
possible, but there might be still some ModuleNotFound Errors . Please, use the issue tracker in the project to help us improve!

Note about different platforms

➜ pip install --editable . --verbose

jupyter labextension install @jupyter-widgets/jupyterlab-manager@1.0
jupyter labextension install @jupyterlab/toc
jupyter labextension install jupyterlab-plotly@1.0.0
conda install -c conda-forge jupyter_nbextensions_configurator

jupyter labextension install jupyterlab-chart-editor@1.2

➜ chmod +x .dotfile
➜ ./.dotfile

(smartcitizen-data) ➜ ~ jupyter lab --version
1.0.2

12.7.3Run

- 258/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-iscape-data/issues

To run the framework, in your terminal type:

This will open a web browser instance (by default localhost:8888/lab) which gives access to the tools in the framework.

(smartcitizen-data) ➜ smartcitizen-iscape-data git:(master) ✗ jupyter lab

Still wondering what this is? Read this introduction to Jupyter

Learn More

12.7.3Run

- 259/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/Notebook%20Basics.html

12.8 Make reports of your data
Tools are provided to generate test or analysis reports, with a custom template. These are generated with the jupyter
nbconvert using the preprocessor and tools in the notebooks and template folder. To generate a report, follow the steps:

Tag the cells in your notebook. You can use the Jupyter Lab Celltags extension. Don't tag the cells you want to hide, and
tag the ones you want to show with show_only_output . This can be changed and add more tags, but we keep it this way
for simplicity

Go to the notebooks folder:

Type the command:

Where:

sc_nbconvert_config.py is the config

notebook.ipynb is the notebook you want

"show_only_output" is a boolean expression that is evaluated for each of the cells. If true, the cell is shown

./templates/full_sc is the default template we have created

../reports is the directory where we will put the html report

OUTPUT_NAME is the name for the export

This generates an html export containing only the mkdown or code cell outputs, without any code. Examples can be found
in the source code repository.

And here is the result!

1.

2.

cd notebooks

3.

jupyter nbconvert --config sc_nbconvert_config.py notebook.ipynb --sc_Preprocessor.expression="show_only_output" --to html --TemplateExporter.template_file=./
templates/full_sc --output-dir=../reports --output=OUTPUT_NAME

•

•

•

•

•

•

You can modify these templates in the templates folder

Don't like the template?

12.8Make reports of your data

- 260/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/jupyterlab/jupyterlab-celltags
https://github.com/fablabbcn/smartcitizen-iscape-data/tree/master/data/reports
https://github.com/fablabbcn/smartcitizen-iscape-data/tree/master/notebooks/templates

12.8Make reports of your data

- 261/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

12.9 Onboarding Sensors
The oboarding appp guides you through the process of the setup using simple language and a friendly graphic language. It
is built as a separate tool from the core Smart Citizen Webpage in order it can be customized for each deployment.

Visit the onboarding app at start.smartcitizen.me

Onboarding app

12.9Onboarding Sensors

- 262/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://start.smartcitizen.me
https://start.smartcitizen.me

Step by step

12.9Onboarding Sensors

- 263/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Welcome page 1.

12.9Onboarding Sensors

- 264/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Select all the parts you received to ensure you are not missing any part

2.

12.9Onboarding Sensors

- 265/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Turn on your Kit

Close the cover of your device

3.

4.

12.9Onboarding Sensors

- 266/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Choose the Wi-Fi network you want to connect to

You will reiceive a message when the Kit it is connected

5.

6.

12.9Onboarding Sensors

- 267/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Add a name to your sensor

Select the location for your sensor

7.

8.

12.9Onboarding Sensors

- 268/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Add your email to register the Kit under your name

Add a user name for people to see you on the platform

9.

10.

12.9Onboarding Sensors

- 269/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Add a password to protect your account

You are done!

11.

12.

12.9Onboarding Sensors

- 270/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

12.9.1 Advanced Kit Selection

The feature below is only recommended for advanced users who know how to configure new or customized sensor devices

Visit the Kit on the platform. Wait one minute till it publishes data

Look at the data!

13.

14.

12.9.1Advanced Kit Selection

- 271/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Click the icon in the bottom right corner

Choose the blueprint of the device you want to setup

How to choose a custom

1.

1.

12.9.1Advanced Kit Selection

- 272/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Click save and continue the process as usually1.

12.9.1Advanced Kit Selection

- 273/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

12.10 Organise your data

When downloading the framework, the following folder structure is copied:

The data directory will be the place where we will organise our data. Each of the sub-directories is explained below:

export : we will export processed data or images here

interim : we will place files used internally for the framework, such as sensor calibration data

processed : the most important folder of our data directory. This will contain a hierarchy with the different tests after
loading into our database. The tests in this folder will have an unified format to easily navigate them. It's the folder we will
load our data from, once we have created a test.

raw : raw sdcard data can be placed here. It will feed our test creation script below

scripts : a compilation of handy scripts to parse excel files, concatenate csvs and more

12.10.1 The test

we will organise our data in tests. The concept is very simple. A test is a collection of devices (SCKs or not), that have a
common purpose. They can be located in the same spot (co-location) or not, and the main idea is that we centralise the
data in a common instance for easy analysis.

Go through the installation guide first before jumping into this guide.

Step by step

├── environment.yml
├── LICENSE
├── README.md
├── src.egg-info
├── data
│ ├── export
│ ├── interim
│ ├── processed
│ ├── raw
│ ├── resports
│ └── scripts
├── docs
├── models
├── notebooks
├── references
├── src
├── tasks

•

•

•

•

•

12.10Organise your data

- 274/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Tests have dates, authors, can have comments (for us to remember what we did), a report attached and can be in different
conditions (outdoor, indoor)... We will put all this metadata in a yaml file to help use look for the tests later on.

Tests can also have different sources. They could be csv files, xls files or data from the Smart Citizen API. For the local files,
we will first pre-process them with the scripts in the data/scripts folder and then place them in the data/raw folder, in csv
format. We use this format because it's a common usable format and, although it is not the most efficient way of archiving
the data, it can be easily explored by other common applications.

Pre-process the sd card data

In order to make our files usable, we will need to have them in a format like YY-MM-DD.CSV . However, if the kit has been reset,
we can find some files like: YY-MM-DD.01 , YY-MM-DD.02 and they should be something like YY-MM-DD_01.CSV , YY-MM-
DD_02.CSV ...

We can now concatenate all the sd card data from a device with the concat_script.py in the data/scripts folder.

We can access the script's help by typing in the terminal:

We can rename them manually, but if we have many of them, we can use this one-liner (works in oh-my-zsh):

Pro-tip

autoload -Uz zmv
zmv '(*).(0*)' '$1_$2.CSV'

12.10.1The test

- 275/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Create a directory (FILES) and put the sd card data of one device in it. Then, run the script with:

And if we now navigate to the FILES directory:

We can find our concatenated file!

Create a test

Once we have all our concatenated files, we can proceed to create our test. For this, you can launch jupyter lab and
open the examples/test_creation.ipynb notebook.

In it, we can follow the instructions in the notebook by filling up the input data.

(smartcitizen-data) ➜ scripts git:(master) ✗ python concat_script.py -h
usage: concat_script.py [-h] [--output OUTPUT] [--index INDEX] [--keep]
 [--ignore IGNORE] [--directory DIRECTORY]

optional arguments:
 -h, --help show this help message and exit
 --output OUTPUT, -o OUTPUT
 Output file name, including extension
 --index INDEX, -i INDEX
 Final name of time index
 --keep, -k Keep full CSV header
 --ignore IGNORE, -ig IGNORE
 Ignore files in concatenation
 --directory DIRECTORY, -d DIRECTORY
 Directory for csv files to concatenate

(smartcitizen-data) ➜ scripts git:(master) ✗ python concat_script.py -k -d FILES
Using files in /Users/macoscar/Documents/04_Projects/02_FabLab/01_SmartCitizen/01_Repositories/DataAnalysis/smartcitizen-iscape-data/data/scripts/FILES
Files to concat:
18-11-08.CSV
18-11-09.CSV
18-11-13.CSV
18-11-14.CSV
18-11-15.CSV
18-11-16.CSV
18-11-17.CSV
18-11-18.CSV
Updating header
Saving file to: Log_Concat.csv

(smartcitizen-data) ➜ FILES git:(master) ✗ ls
18-11-08.CSV 18-11-13.CSV 18-11-15.CSV 18-11-17.CSV Log_Concat.csv
18-11-09.CSV 18-11-14.CSV 18-11-16.CSV 18-11-18.CSV

To synchronise our tests, we will always need to specify the location. This means that all our tests will be in 'UTC'.

A note about the timestamps

12.10.1The test

- 276/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-iscape-data/blob/master/examples/test_creation.ipynb

TEST INFORMATION

ADD DEVICE INFORMATION

An example for each type of device is given below. A test can contain as many devices you need, each with an unique
identifier.

Data of a simple SC KIT from the API, downloading all the available data, with a frequency of 1Min:

Data of a simple SC KIT from the API, downloading the data from a certain date, up to the last available data:

Data of a SC STATION from the local csv data, located in London. The csv file is in data/raw/5527.csv . Also, the device is
archived in the device history calibration described in this section:

Data of a SC STATION from the API, located in London. The device is archived in the device history calibration:

#----
Is you are creating a new test (True) or if the test is going to be updated (False)
isnewtest = True
Date when you performed the test in 'YYYY-MM-DD' format
date = '2020-01-24'
INTernal or EXTernal test (made by your organisation or others)
who = 'INT'
Short title for the test
short_name = 'AMAZING_TEST'
Comment for your test. Make this as long as you need to describe fully the purpose of this test
comment = '''
'''
Project
project = 'SmartCitizen'
Firmware version
commit = ''
Who made the test
author = 'Myself'
Test type (indoor, outdoor, anything that helps you organise later on)
type_test = 'outdoor'
If you are going to document the results somewhere, you can put a link below
report = ''
notes = ''
#----

•

device_1 = device_wrapper({'device_id': '8739',
 'type': 'KIT',
 'version': '2.1',
 'pm_sensor': 'PMS5003',
 'location': 'Europe/London',
 'frequency': '1Min',
 'source': 'api'})

•

device_2 = device_wrapper({'device_id': '8739',
 'type': 'KIT',
 'version': '2.1',
 'pm_sensor': 'PMS5003',
 'location': 'Europe/London',
 'frequency': '1Min',
 'source': 'api',
 'min_date': '2019-07-12',
 'max_date': None})

•

device_3 = device_wrapper({'name': '5527',
 'type': 'STATION',
 'version': '2.1',
 'pm_sensor': 'PMS5003',
 'location': 'Europe/London',
 'frequency': '1Min',
 'device_history': '5527',
 'source': 'csv_new',
 'fileNameRaw': device_name + '.csv',
 'fileNameInfo': ''})

•

12.10.1The test

- 277/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Data of another device (reference equipment in this case), with local csv file, with frequency of 15Min. Extra information
has to be given so that we can process the units of the different channels, the time index format and the location. The
framework will conver the names from the source_channel_names to target_channel_names , and convert the units , in
case they are available.

PROCESS EVERYTHING

Once we have all the information, we can then process the files:

12.10.2 Devices history and calibration

Each device can have different sensors throughout it's life and, for each sensor, we can have different calibration
parameters. These two sets of information are stored in data/interim .

Devices History

Stored in data/interim/sensorData.yaml , it's a file to be manually filled with all the devices ID's you want to manage. It
contains basic references of the internal sensors that can be later on used in the different calibration files. An example of a
Smart Citizen Station is shown below. Since the device can have different sensors at different times, the dates are also
important. The ID (below 4773), should be the same as in the test defined above in the field device_history :

device_4 = device_wrapper({'device_id': 5262,
 'type': 'STATION',
 'version': '2.1',
 'device_history': '5262',
 'pm_sensor': 'PMS5003',
 'location': 'Europe/London',
 'frequency': '1Min',
 'source': 'api'})

•

device_5 = device_wrapper({'name': 'PARROT_3',
 'type': 'OTHER',
 'location': 'Europe/London',
 'fileNameRaw': 'grow_parrot_u6dODj2Dnm1570629407808.csv',
 'fileNameInfo': '',
 'source': 'csv',
 'equipment': 'PARROT_SENSOR',
 'index': {'name' : 'Time','format' : '%Y-%m-%d %H:%M:%S', 'frequency' : '15Min'},
 'channels': {'source_channel_names' : ('air_temperature_celsius', 'battery_percent', 'calibrated_soil_moisture_percent', 'fertilizer_level', 'light',
'soil_moisture_percent', 'water_tank_level_percent'),
 'units' : ('degC', '%', '%', '-', 'lux', '%', '%'),
 'target_channel_names' : ('TEMP', 'BATT', 'Cal Soil Moisture', 'Fertilizer', 'Soil Moisture', 'Water Level')
 },
 'location': 'Europe/Madrid'})

list_devices = [device_1, device_2, device_3, device_4, device_5]
newtest.create(details, list_devices)

'4773':
 hardware_id: '8ce207d2-504e4b4b-372e314a-ff03180c'
 sck_id: 'SCK2118080014'
 id: 'SCS21001'
 type: 'station'
 mac: '07D7'
 internal_ref: 'DEMO'
 date_from: '2018-09-17'
 date_to: '2018-09-21'
 gas_pro_board:
 CO: 162581720
 NO2: 202160405
 O3: 204160159
 slots: !!python/tuple [CO, NO2, O3]
 pm_board:
 PMS5003_1: 2017123000701
 PMS5003_2: 2017123000703

12.10.2Devices history and calibration

- 278/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Devices calibration

Stored in data/interim/CalibrationData/ , each json file contains a descriptor file for each sensor calibration data. An
example for Alphasense's Electrochemical sensors is shown below:

12.10.3 Load the data

We have two main methods to load data into the framework: a test (coming from sd card data or API), and the API, directly.
Run the following piece of code in your notebook :

Loading data from a test

If you have local tests created as defined here, the tests will be accessible when you do:

You can load as many as you want, and select the frequency and what to do with NaN values.

The set of options below will try to:

Clean NaNs and how (drop or fill)

Frequency for the data (frequency)

Save API data (store_cached_API) : will try to cache this data in the disk for later use, and faster load next time (see next
option)

Load cached API data (load_cached_API): if you have loaded this test previously, and if you have previously marked the
above option, it will load the data directly from your disk, to avoid loading it again from the API

A normal output is shown below:

{"Serial No": "162031254", "Target 2": "na", "Target 1": "CO", , "Sensitivity 1": "568.3", "Sensitivity 2": "0", "Zero Current": "-34", "Aux Zero Current": "-20.8"}
{"Serial No": "162031257", "Target 2": "na", "Target 1": "CO", , "Sensitivity 1": "493.1", "Sensitivity 2": "0", "Zero Current": "-69.4", "Aux Zero Current": "-18.6"}

Currently, we store unique calibrations only for Alphasense sensors. This calibration is provided by the manufacturer directly and stored in this file.

Calibration data

Check how to load test data in this example and how to download data from the API in this one

Info

[print (test) for test in data.get_tests(data.dataDirectory).keys()]

It is better to decide this now and not when we create the test. Better to have the information available always and process it each time on load than
vice-versa.

Decide this now

options = {'clean_na': True, 'clean_na_method': 'drop', 'frequency': '3Min', 'load_cached_API': True, 'store_cached_API': True}

•

•

•

•

12.10.3Load the data

- 279/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-iscape-data/blob/master/examples/load_test_data.ipynb
https://github.com/fablabbcn/smartcitizen-iscape-data/blob/master/examples/load_device_API.ipynb

Loading data from the API

The devices are the devices IDs from: https://smartcitizen.me/kits/1234 . An example is shown below:

You should see something like this:

Note that if the device ID is in the devices history, it will also load the calibration data for you.

A more advanced guide can be found here

12.10.4 Data structure

Data is organised internally using tests. Each test can contain multiple devices. Each device, can contain data from one
single source, either an API, or CSV files.

Devices within a test.

Data inside the device:

We can check the columns in it by:

12.10.5 Export data

Once we have concluded our analysis, we can export the process data.

Test Load
Loading test 2018-01_INT_BOLOGNA_RELEASE
Comment: Pre Bologna release validation with 6 sensors (4 kits and 2 alphasenses)
Device ID SCK73FD
No metadata found - skipping
Kit SCK73FD located Europe/Madrid
Kit SCK73FD has been loaded
...

device = api_device('1234', verbose = True)
device.get_device_data(start_date = None, end_date = None, frequency = '1Min', clean_na = False, clean_na_method = None);

Loading device 1234 from API
Kit ID 19
...

Info

Tests
data.tests.keys()

data.tests[testname].devices.keys()

data.tests[testname].devices[device_name].readings

data.tests[testname].devices[device_name].readings.columns

12.10.4Data structure

- 280/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-iscape-data/blob/master/examples/advanced_load_data_API.ipynb

Some options are available:

Copy to test folder: it will export the csv to the /processed folder in the test

Include All / Raw / Processed: Options to include all the channels in your test, or only the ones tagged as raw or
processed from the descriptor file in: data/interim/sensorNamesExport.json

Rename channels: if you want to rename channels with the descriptor file mentioned above

Test name where the device is
testname = 'mytest'
List of devices to export
devices = list(data.tests[mytest].devices.keys())
Example exporting only the first. We can iterate over devices with a for loop and export them all in separate CSV files
devicename = devices[0]
Export it
data.export_data(testname, devicename, export_path = '/path/to/folder', all_channels = True, forced_overwrite = True)s

•

•

•

12.10.5Export data

- 281/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

12.11 Third party sensors
This page reflects examples on how to use and implement compatible third party sensors.

12.11.1 Use of already supported sensors

The auxiliary port is designed to expand the sensor board by adding new sensors via the common I2C standard. However
other protocols are supported, such as SPI or UART. The pins have the following default configuration:

By connecting any of the supported sensors to the SCK, it will automatically be detected and data will be logged into the
SD-card. You can check the output of the sensor command in the Serial output:

Publishing data using custom devices

The Smart Citizen Platform supports data from any sensor that has a numerical digital output. The Smart Citizen API
supports other devices to publish data to the platform by previously agreeing with the Smart Citizen terms and conditions.

By third party sensors, we mean sensors that have been developed by others, with no affiliation to the Smart Citizen Team.

What are third party sensors?

This page is a digest and updated version of the Making Sense D2.3 Smart Citizen Toolkit report and Making Sense D.24 Smart Citizen Toolkit report
updates. Both these reports reflect information for the SCK 1.5, which is not a commercially available version of the kit. This guide is an update version
for the SCK 2.1.

PIN PORT Function

1 SCL I2C (by software: 1-WIRE or other)

2 SDA I2C (by software: 1-WIRE or other)

3 VCC Voltage

4 GND Ground

> sensor
Enabled

Temperature (60 sec)
Humidity (60 sec)
Ext Temperature (60 sec)
Ext Humidity (60 sec)
Battery (60 sec)
Light (60 sec)
Noise dBA (60 sec)
Barometric pressure (60 sec)
PM 1.0 (60 sec)
PM 2.5 (60 sec)
PM 10.0 (60 sec)

12.11Third party sensors

- 282/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://making-sense.eu/wp-content/uploads/2016/08/Making-Sense-D23-Smart-Citizen-Toolkit.pdf
http://making-sense.eu/wp-content/uploads/2017/09/Making-Sense-D2.4-Documentation-on-Toolkit-add-ons.pdf
http://making-sense.eu/wp-content/uploads/2017/09/Making-Sense-D2.4-Documentation-on-Toolkit-add-ons.pdf

For each device type, a new device blueprint needs to be created. A device blueprint defines the sensors and the metrics
that your devices will have. This will include the hardware details of your sensors and the kind of data that will be published
to the platform. Custom calibration formulas to be applied to the data when processed in the platform can be also added.

The minimal Device Blueprint includes all the necessary data that a user might provide in order to create a Kit. It is
composed of Components and those can reuse existing Sensors and Measurements definitions. Sensors define the
hardware or software component that records the data. Measurements are descriptions of what sensors are recording.
Blueprints can be shared across many devices or can be tailored per device in order to provide dedicated calibration
formulas per individual sensor. This is achieved with the Components binding.

The following example shows a basic Device Blueprint in JSON. This is the minimum of information that a blueprint needs:

The following examples expand the previous Device Blueprint with the complete data model:

Once a device blueprint is added to the platform, any user can create as many devices as needed and publish data to them following the standard Smart
Citizen API. It is important to note that Device Blueprint currently cannot be created by users and should be requested by contacting
support@smartcitizen.me.

How to do it?

{
 “name”: “The Frog”,
 “description”: “Custom Arduino Humidity Sensor”,
 “slug”: “ms:0,5”,
 “components”: [{
 “map”: “hum”,
 “equation”: “(125.0 / 65536.0 * x) + 7”,
 “sensor”: {
 “name”: “HPP828E031”,
 “description”: “Humidity”,
 “unit”: “%”,
 “measurement”: {
 “name”: “relative humidity”,
 “description”: “Relative humidity is a measure...”
 }
 }
 }]
}

{
 “id”: 10,
 “uuid”: “056e452d-41c4-436d-a640-2157a278037d”,
 “slug”: “ms:0,5”,
 “name”: “The Frog”,
 “description”: “Custom Arduino Humidity Sensor”,
 “created_at”: “2016-06-18T16:25:02Z”,
 “updated_at”: “2016-06-18T16:25:02Z”,
 “components”: [{
 “id”: 35,
 “uuid”: “22da9377-5151-4547-a71b-6fd8958e1330”,
 “equation”: “(125.0 / 65536.0 * x) + 7”,
 “map”: “hum”,
 “sensor”: {
 “id”: 13,
 “uuid”: “1c19ae8f-b995-460f-87a3-a9d0c140abfb”,
 “parent_id”: 19,
 “name”: “HPP828E031”,
 “description”: “Humidity”,
 “unit”: “%”,
 “created_at”: “2015-02-02T18:24:30Z”,
 “updated_at”: “2015-07-05T19:54:54Z”,
 “measurement”: {
 “id”: 2,
 “uuid”: “9cbbd396-5bd3-44be-adc0-7ffba778072d”,
 “name”: “relative humidity”,
 “description”: “Relative humidity is a measure of the amount of
 moisture in the air relative to the total amount of moisture the air can hold. For instance,
 if the relative humidity was 50%, then the air is only half saturated with moisture.”
 }
 }
 }]
}

12.11.1Use of already supported sensors

- 283/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

mailto:support@smartcitizen.me
http://developer.smartcitizen.me/#kits
http://developer.smartcitizen.me/#components
http://developer.smartcitizen.me/#sensors
http://developer.smartcitizen.me/#measurements

12.11.2 Implementing other sensors

Implementation of other sensors goes through the modification of the Firmware. This is an advanced user feature, and
previous programming experience in C++ is necessary.

The workflow we normally follow for this goes like:

Find out if there is an already existing library for the desired sensor. Good places to look at are Adafruit's repository,
Sparkfun's repository or a global Github search

Implement this library in the firmware. The library needs certain functions to be valid. (More info soon!)

If the device needs to log the data on the platform, you can email us at support@smartcitizen.me with a request for a new
device blueprint. However, it is easier to simply log the data in SD-card in this case, if the online recording is not fully
mandatory.

Drop an email to support@smartcitizen.me and we will try to help!

Too much information?

You can use off-the-shelf sensors from the extensive Groove open hardware sensor library, removing the need to build our own sensor add-ons from
scratch. Foto seeed sensors Seeed Grove Bricks

Using SEEED Studio Grove bricks

This section is under heavy development. Thanks for your patience!

This is a WIP

1.

2.

3.

Make a pull request with your contribution back to the firmware so that other can use it!

Contribute it back to the community

12.11.2Implementing other sensors

- 284/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

mailto:support@smartcitizen.me
https://github.com/adafruit
https://github.com/sparkfun
https://github.com/
mailto:support@smartcitizen.me

12.12 Update the firmware
When new features are developed or bugs are fixed we will release new versions of the SCK firmware.

If you already configured your kit on the smartcitizen platform you will need the token that the platform gave you during the onboarding
process, to recover it from your kit:

Click your kit button until the kit is in setup mode, the led should be red.

Connecto to the kit with your mobile device as you did during the onboarding process.

Write down the token of your kit.

After updating the firmware follow this same steps to input the token and wifi credentials, after this your kit will be publishing on the same registered
device than before.

Info

1.

2.

3.

 The guide below applies to both, SCK 2.0 and SCK2.1.

A note about versions

Connect your kit with a micro USB cable to your computer.

Double click the reset button of your SCK, the SCK led should turn green and a new drive called SCK-20 should appear on your computer file
browser.

Inside the SCK-20 drive you should see some files, double click the INDEX.HTM file and our github releases page will open in your browser.
Download the new firmware called SAM_firmware_XXX.uf2 and save it to your computer.

Simply drag the firmware file you downloaded over the SCK-20 drive, your kit led will blink in green and after some seconds it will reset and
start with the new version.

If your Wi-Fi module needs a firmware update when you connect to your kit to setup the network you will see a screen that will ask for the new
file. You can find it in our github releases page, look for the file called ESP_firmware_XXX.bin . If you don't see it, check in a previous release (some
releases don't include Wi-Fi firmware).

After the update you just done, you can configure your kit as a new device following the onboarding process or use your previous token as
explained before.

Updating your kit is very simple

•

•

•

You can backup your current firmware version just saving the file called CURRENT.UF2.

Tip

•

•

•

12.12Update the firmware

- 285/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://github.com/fablabbcn/smartcitizen-kit-21/releases/latest
https://github.com/fablabbcn/smartcitizen-kit-21/releases/latest
https://github.com/fablabbcn/smartcitizen-kit-21/releases
https:start.smartcitizen.me

If you are an advance user managing a big deployment of devices you can obtain remotely the version of all the Kits you have registered by looking at
the hardware_info property of each of your devices using the platform API /v0/devices/ . When your Kit is in Wi-Fi mode, it publishes the information
daily.

More info in the platform API documentation.

Obtain your firmware version remotely (advanced)

"hardware_info": {
 "id": "DFD098A750515157382E3120FF101D12",
 "mac": "B6:E6:2D:66:47:6D",
 "time": "2020-04-14T03:00:24Z",
 "esp_bd": "",
 "hw_ver": "2.1",
 "sam_bd": "2019-11-27T12:49:13Z",
 "esp_ver": "",
 "sam_ver": "0.9.6-4e90c77"
}

12.12Update the firmware

- 286/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://developer.smartcitizen.me/#devices

12.13 Updating the Wi-Fi

Click your kit button until the kit is in setup mode, the led should be red.

Connect to the kit with your mobile device as you did during the installation process. You will need to search for a Wi-Fi
network called SmartCitizen[···] . If you have multiple kits [···] is the unique identifier of your kit.

Once connected you should see the Setup App in your phone. If it doesn't show up automatically you can open http://
192.168.1.1 on your phone browser.

This guide will help you update your sensor Wi-Fi settings as well as other parameters you can set on the Setup App

Info

 The kit supports Wi-Fi WEP, WPA/WPA2 and open networks that are common networks in domestic environments and small businesses.

 But, it does not support WPA/WPA2 Enterprise networks such as EDUROAM or networks with captive portals such as those found in Airports and
Hotels

Warning

1.

1.

2.

12.13Updating the Wi-Fi

- 287/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://192.168.1.1
http://192.168.1.1

On the app choose start to move to the next page.

You will see your device key or token. Do not change it and choose next.

The process also works on laptops, desktops and tablets, connected than can connect to the SmartCitizen[···] network.

Info

1.

1.

12.13Updating the Wi-Fi

- 288/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Set your new Wi-Fi settings on the next screen as you did during the installation process.

The Led will go blue and your kit should start to publish again using the new Wi-Fi. You can confirm it by visiting your
device on smartcitizen.me/kits. You can repeat the process as many times as you want by going back to step 1.

1.

1.

If your Kit is not publishing check the LED status chart to know more about it.

Info

12.13Updating the Wi-Fi

- 289/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://smartcitizen.me/kits

12.14 Upload data to zenodo
Uploading results to Zenodo is also possible using the data analysis framework.

Once you have your data organised in a test, you can upload it directly to Zenodo and share it with others. An example of
this is provided in the example notebook.

For this to work, we need to have a token. Put this in a secrets.py file in the src directory:

In this file, include your token as below:

Next, you can define a upload.yaml file to describe the upload (see one example here:

> cd src
> ls -la
 .
 ..
 __init__.py
 __pycache__
 config.yaml
 data
 models
 saf.py
 secrets.py
 src.egg-info
 tools
 visualization

zenodo_token='yourtokenhere'

12.14Upload data to zenodo

- 290/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://zenodo.org/
https://github.com/fablabbcn/smartcitizen-iscape-data/blob/master/examples/upload_to_zenodo.ipynb
https://zenodo.org/account/settings/applications/
https://github.com/fablabbcn/smartcitizen-iscape-data/blob/master/data/uploads/example_zenodo_upload.yaml

Different uploads can be defined by each main key: example_upload_1.json and example_upload_2.json . Each of them
contains the following information (all of them can be later modified or added in the web interface in zenodo.org)

Metadata for Zenodo

title : Name for the dataset

description : dataset description (mandatory). This field accepts HTML

upload_type : 'dataset' (mandatory - always, for now)

keywords : list of keywords, such as ['Low-Cost Sensors', 'Air Quality', 'Citizen Science']

creators : dictionary containing the authors. Can contain the name, the affiliation and an orcid

access_right : 'open' (other options in the zenodo documentation)

communities : id for the zenodo data community

grants : grant id

Upload

tests : ['TEST_1', 'TEST_2']

options :

include_processed_data : true or false. Whether or not to include the processed data from the processed folder in the
test directory

include_footer_doi : true. If there is a report attached, add a nice footer to it with the DOI

report : list of reports to attach. Must be also in the data/uploads folder

To upload the datasets, we can use the zenodo sandbox and a dry_run, to check everything is running well. Then, make
these defaults to False to actually upload it:

example_upload_1.json:
 title: 'Example Data 1'
 description: 'This field accepts HTML'
 upload_type: 'dataset'
 keywords: ['Low-Cost Sensors', 'Air Quality', 'Citizen Science']
 creators: [{'name': 'Author 1', 'affiliation': 'Affiliation 1', 'orcid': '0000-0000-0000-0001'},
 {'name': 'Author 2', 'affiliation': 'Affiliation 2', 'orcid': '0000-0000-0000-0002'}]
 tests: ['TEST_1', 'TEST_2']
 access_right: 'open'
 options:
 include_processed_data: false
 include_footer_doi: true
 communities: [{ "identifier": "community_in_zenodo"}]
 grants: [{"id": "GRANT_ID"}]
 report: ['report.pdf']
example_upload_2.json:
 title: 'Example Data 2'
 description: 'This field accepts HTML'
 upload_type: 'dataset'
 keywords: ['Low-Cost Sensors', 'Air Quality', 'Citizen Science']
 creators: [{'name': 'Author 1', 'affiliation': 'Affiliation 1', 'orcid': '0000-0000-0000-0001'},
 {'name': 'Author 2', 'affiliation': 'Affiliation 2', 'orcid': '0000-0000-0000-0002'}]
 tests: ['TEST_3', 'TEST_4']
 access_right: 'open'
 options:
 include_processed_data: false
 include_footer_doi: false
 communities: [{ "identifier": "community_in_zenodo"}]
 grants: [{"id": "GRANT_ID"}]
 report: ['report_2.pdf']

All the keys below are linked to the zenodo documentation

Info

•

•

•

•

•

•

•

•

•

•

•

•

•

12.14Upload data to zenodo

- 291/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://developers.zenodo.org/
https://zenodo.org
https://orcid.org/
https://developers.zenodo.org/

Finally, to actually deploy the dataset, you need to visit the deposit section and aprove it manually.

You can use the sandbox.zenodo.org for tests, as well as a dry_run. When you are happy with your upload, set these variables to False
Then go to uploads in the zenodo section and publish whenever you are ready
data.upload_to_zenodo('example_zenodo_upload', sandbox = False, dry_run = True)

Note that a .json file will be created in the data/uploads folder containing the metadata necessary for the upload (as liked by zenodo API). You can
securely delete this file once you are done. Note that, in case include_footer_doi=true , the actual pdf to upload will be report_doi.pdf

Warning

Get the iSCAPE datasets from Zenodo here:

https://zenodo.org/record/3570700

https://zenodo.org/record/3570680

https://zenodo.org/record/3570688

Info

•

•

•

12.14Upload data to zenodo

- 292/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://zenodo.org/deposit
https://iscapeproject.eu/
https://zenodo.org/record/3570700
https://zenodo.org/record/3570680
https://zenodo.org/record/3570688

12.15 Uploading SD Card Data
Here some instructions on how to upload CSV files to Smartcitizen platform. First be sure to be logged and go to your profile.

Check what they mean here

Weird files?

12.15Uploading SD Card Data

- 293/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://smartcitizen.me/profile/kits

On your kits' list, click on the wheel and then on "Upload CSV".

Once on the upload page, you can add some files by clicking on the "Load CSV files" button.

Select some files as much as you like, to be them ready to upload. Then on the drop-down menu select the "Upload" option

Step by step

12.15Uploading SD Card Data

- 294/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Click on the "Apply" button to upload them

Congrats! You just uploaded your files CSV files on the Smartcitizen platform.

12.15Uploading SD Card Data

- 295/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

12.15Uploading SD Card Data

- 296/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

12.16 Using the Shell

The SCK (from V2.0 onwards) has an integrated command shell over USB to manage all the kits functionalities for advanced
users. In this guide, we will cover how to access to this functionality in different platforms, and some examples.

12.16.1 What is it?

We could define the shell as a text-based interface to access almost any SCK functionality. In terms of hardware, it relies
on the serial communication between the SCK and your computer, so any decent USB cable connected between them will
do.

12.16.2 How to access it?

Software-wise, different platforms will have different interfaces. The easiest and most reliable for all of them would be
through the Arduino IDE.

This guide is a work in progress!

Warning

12.16Using the Shell

- 297/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://en.wikipedia.org/wiki/Serial_communication
https://www.arduino.cc/en/Main/Software

Launch the Arduino IDE and select the port under Tools > Port > :

Launch the Serial Monitor under Tools > Serial Monitor . Make sure that the dropdowns in the bottom are set as in the image below
(Carriage return and 115200 baud)

Type in help to get started.

Using the Arduino IDE

•

•

•

12.16.2How to access it?

- 298/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

More advanced users would probably rather use a more rugged interface. In this case, you could use screen in your
terminal of choice:

If you already installed platformio to edit the firmware you can use it here, too

12.16.3 Some examples!

The help command outputs a quite intuitive explanation of all the commands:

> ls /dev/cu | grep usb
cu.usbmodem1411
tty.usbmodem1411
> screen /dev/cu.usmodem1411
SCK >
...

> pio device monitor
SCK >
...

The port will take a little time to appear in your list of devices. Normally the LED of your SCK will be static white during that period.

Be patient!

12.16.3Some examples!

- 299/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://platformio.org/

Set the recording configuration

If you want to change your recording mode to, for instance, sdcard mode, you could do so by typing:

To set it up in network mode:

To modify your wifi:

You can check your current configuration by typing config :

SCK > help
reset: Resets the SCK
version: Shows versions and Hardware ID
rcause: Show last reset cause (debug)
outlevel: Shows/sets outlevel [0:silent, 1:normal, 2:verbose]
help: Duhhhh!!
pinmux: Shows SAMD pin mapping status
sensor: Shows/sets enabled/disabled sensor [-enable or -disable sensor-name] or [-interval sensor-name interval(seconds)]
read: Reads sensor [sensorName]
control: Control sensor [sensorName] [command]
monitor: Continously read sensor [-sd] [-notime] [-noms] [sensorName[,sensorNameN]]
saved: Shows locally stored sensor readings [-details] [-publish]
free: Shows the amount of free RAM memory
i2c: Search the I2C bus for devices
charger: Controls or shows charger configuration [-otg on/off] [-charge on/off]
config: Shows/sets configuration [-defaults] [-mode sdcard/network] [-pubint seconds] [-readint seconds] [-wifi "ssid" ["pass"]] [-token token]
esp: Controls or shows info from ESP [-on -off -sleep -wake -reboot -flash]
netinfo: Shows network information
time: Shows/sets time [epoch time] [-sync]
state: Shows state flags
hello: Sends MQTT hello to platform
debug: Toggle debug messages [-sdcard] [-espcom] [-list]
shell: Shows or sets shell mode [-on] [-off]
mqtt: Publish custom mqtt message ('topic' 'message')

The SCK outputs a lot of information via serial. This can be sometimes confusing while typing commands. You can silent it a bit with this command:

This will turn your LED static yellow, and no output except responses to your commands will be given.

Remember to turn it off after you are done experimenting!

Pro tip

SCK > shell -on
Shell mode: on

SCK > shell -off
Shell mode: off

SCK > config -mode sdcard

SCK > config -mode network -wifi "SSID" "PASSWORD" -token 123456

Note that the token is not between quotes since it's always 6 digits

Warning

SCK > config -wifi "NEWSSID" "NEWPASSWORD"

SCK > config
Mode: sdcard
Publish interval: 60
Reading interval: 60
Wifi credentials: not configured
Token: not configured
Mac address: 11:22:33:44:55:66

12.16.3Some examples!

- 300/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Get version data

Check your hardware and firmware version data with the command version :

List/modify the active sensors

By typing in sensor , a list of enabled and supported sensors is displayed:

To disable one sensor, you can type in part of the sensor name:

To enable it, if it's present:

Read/Monitor some sensors

If one sensor is enabled, you can read it (once) or monitor it (as fast as the SCK can):

To monitor one sensor:

SCK > version
Hardware Version: 2.1
SAM Hardware ID: 5934C4B550515157382E3120FF151210
SAM version: 0.9.1-30e1776
SAM build date: 2019-05-07T02:45:29Z
ESP MAC address: 86:0D:8E:A7:7F:CC
ESP version: not synced
ESP build date: not synced

SCK > sensor

Disabled

PM board Dallas Temperature
[...]

Enabled

Temperature (60 sec)
Humidity (60 sec)
Battery (60 sec)
Light (60 sec)
Noise dBA (60 sec)
Barometric pressure (60 sec)
VOC Gas CCS811 (60 sec)
eCO2 Gas CCS811 (60 sec)
PM 1.0 (60 sec)
PM 2.5 (60 sec)
PM 10.0 (60 sec)

SCK > sensor -disable Noise
Disabling Noise dBA
Saved configuration on eeprom!!

SCK > sensor -enable Noise
Enabling Noise dBA
Saved configuration on eeprom!!

If the sensor you are trying to connect is not recognised, the kit will complain:

Only if available!

SCK > sensor -enable atlas
Failed enabling Atlas Temperature

SCK > read Noise
Noise dBA: 53.85 dBA

12.16.3Some examples!

- 301/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Or all of them, with no arguments:

If you don't need to output the miliseconds column (the time since last reading) or the timestamp , you can do so by:

Something cool to do with the monitor , is to log the sensor output into a file for later analysis. For instance, in your terminal
you could do:

Then, if we check the contents of the file (normally something like screenlog.X :

SCK > monitor light
Time Miliseconds Light
2019-07-10T17:58:07Z 6 137
2019-07-10T17:58:07Z 98 137
2019-07-10T17:58:07Z 98 136
2019-07-10T17:58:07Z 98 137
2019-07-10T17:58:07Z 108 137
2019-07-10T17:58:07Z 98 137
2019-07-10T17:58:07Z 98 137
2019-07-10T17:58:07Z 108 137
2019-07-10T17:58:07Z 98 137
2019-07-10T17:58:08Z 98 137
2019-07-10T17:58:08Z 108 137
2019-07-10T17:58:08Z 98 136
...

SCK > monitor
Time Miliseconds Battery Light Temperature Humidity Noise dBA Barometric pressure VOC Gas CCS811 eCO2 Gas CCS811 PM 1.0 PM 2.5 PM
10.0
2019-07-11T09:13:04Z 5 37 137 28.75 57.72 1.5 101.29 1.00 408.00 1.5 1.5 1.5
2019-07-11T09:13:07Z 3195 37 138 28.78 57.65 1.5 101.30 1.00 408.00 1.5 1.5 1.5
2019-07-11T09:13:08Z 694 37 136 28.77 57.62 1.5 101.29 1.00 408.00 1.5 1.5 1.5

SCK > monitor -noms light
Time Light
2019-07-10T17:58:58Z 136
2019-07-10T17:58:58Z 136
2019-07-10T17:58:58Z 137
2019-07-10T17:58:58Z 137
2019-07-10T17:58:59Z 136
...

SCK > monitor -notime light
Miliseconds Light
6 137
98 137
98 137
99 137
108 137
...

If your kit has no time configured (the LED should be flashing), the output would look like:

Warning

SCK > monitor Noise
Time Miliseconds Noise dBA
0 1 52.83
0 187 50.36
0 187 52.05
0 187 51.95
0 187 48.28
0 187 48.72
0 187 50.81
...

> echo "monitor pm light" > /dev/cu.usbmodem1411 && screen -L /dev/cu.usbmodem1411

12.16.3Some examples!

- 302/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

This can be useful in case you want to log data as fast as possible, with little delay between readings (~100ms).

monitor light
Time Miliseconds Light
2019-07-11T09:10:05Z 6 141
2019-07-11T09:10:05Z 98 141
2019-07-11T09:10:05Z 99 141
2019-07-11T09:10:05Z 98 141
2019-07-11T09:10:05Z 108 141
2019-07-11T09:10:05Z 98 141
2019-07-11T09:10:05Z 98 141
2019-07-11T09:10:05Z 98 141
2019-07-11T09:10:06Z 98 141
2019-07-11T09:10:06Z 98 141
2019-07-11T09:10:06Z 108 141
2019-07-11T09:10:06Z 98 141
2019-07-11T09:10:06Z 98 141
...

12.16.3Some examples!

- 303/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

12.16.4 Advanced (but cool) example!

12.16.4Advanced (but cool) example!

- 304/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

The digital microphone in your SCK uses an FFT algorithm to calculate the final sound pressure level (SPL) in different scales (A, C, Z). The FFT
spectrum is also available for user analysis. Let's have a look!

First, enable it with:

Then, monitor and log it in a file with:

In this file, we will have something like:

The values between the dates are the actual FFT spectrum. We will now clean the lines with the dates and then plot the data. For this, we will use a
python code to make things easier. You can download the code here.

If we run this code in python3 in the same folder where the screenlog from before is:

We will have two outputs: a csv file with the spectrums in rows, and a png image that looks like this!

Making most of the digital microphone

•

•

SCK > sensor -enable fft
Enabling Noise FFT

•

echo "monitor fft" > /dev/cu.usbmodem1411 && screen -L /dev/cu.usbmodem1411

•

12
15
19
20
0
...
12
23
2019-07-11T09:30:01Z 5 null
...

•

•

> python spectrum_example.py

12.16.4Advanced (but cool) example!

- 305/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

You can see that we were playing with a tone generator to make some high pitch noises at 10kHz and 20kHz.

12.16.4Advanced (but cool) example!

- 306/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

http://onlinetonegenerator.com/

13. Sensor Analysis Framework

13.1 Low Cost Sensors Calibration
Low cost sensor calibration and assessment pose a great challenge for data quality objectives. We follow this sensor
calibration procedure, which can be split into three stages:

Behaviour assesment: in laboratory conditions, serving as base testing for assessing general sensor behaviour.

Characterisation: also in laboratory conditions, assess generic sensor parameters as sensitivity, zero and span.

Modelisation with real world deployment: including other variables such as environmental factors and sensor cross-
sensitivity.

Each of these stages apply differently depending on the type of sensor. For instance the electrochemical sensors present in
the Station are already characterised by the manufacturer, while the old SGX MICS4514 Metal Oxyde Sensors in the Urban
Board of the Smart Citizen Kit are not. The different characteristics of these sensors make different calibration approaches
to be carried out.

Base calibration parameters need to be determined in controlled conditions. In this stage, the aim would be to find
parameters such as:

1.

2.

3.

13.Sensor Analysis Framework

- 307/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

Sensor sensitivity: the sensor response per each ppm of target pollutant in nominal conditions

Zero: the sensor reading in zero air (pure air at 25degC).

Sensor response (t)

Sensor range: maximum and minimum readings for the sensor

Finally, after this initial calibration assessment, it is critical to gather as much data as possible from long term sensor
deployments. These deployments should aim to cover the widest range of sensor exposure conditions, in order to generate
robust models. While dealing with low cost sensors this stage is very important, as it is detailed in the sections below.

These sensor deployments serve for two main purposes: to generate quantitative classification methods that can classify
the air quality in predefined ranges (i.e. 'poor', 'fair', good'); and to generate predictive qualitative models for more accurate

•

•

• 90

•

13.1Low Cost Sensors Calibration

- 308/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

values. Either of them need large amounts of data if the models are aimed to be representative. Additionally, by the mere
nature of the data and the sensors themselves, these models would need to be:

Robusts to noise

Capable of learning non-linear relationships

Handle multivariate inputs

Capable of learning temporal dependence

These needs make machine learning methods great canditates for modeling the data. These methods are implemented in
the Sensor Analysis Framework, as well as other more traditional linear methods. The combination of these algorithms with
large amounts of data gathered during, for instance, the iScape project, offers a great opportunity to demonstrate the use of
low cost sensors for air quality monitoring.

Smart Citizen Kits

Due to their construction, low-cost metal oxyde sensors suffer from high levels of spread in their baseline resistance and
sensitivity. As well, these sensors are generally reactive to other pollutants in the atmosphere, with a low selectivity of the
actual target pollutant and drifts in their behaviour can be seen after some weeks of exposure. As well, metal oxyde sensors
show short and long term drifts in their calibrations.

Ideally, a sensor characterisation in laboratory conditions is needed to assess sensitiviy, baseline resistances sensor-to-
sensor spread, aiming to obtain normalising factors for each sensor or group of sensors. Even if possible, the variability of

•

•

•

•

13.1Low Cost Sensors Calibration

- 309/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

the sensor behaviour during the deployment stage, makes the individual characterisation and calibration of the Metal
Oxyde sensors unrealistic. For this reason, indicative measurements are to be expected from this type of low cost sensors.
More information about the sensors present in the urban board of the SCK can be found in this section.

Smart Citizen Stations

Electrochemical sensors

These sensors can achieve significant accuracy, but they require a particular data post-processing that combines the
measurement at the sensor electrodes with the sensor characterisation on the factory as well as other environmental
parameters as air temperature and relative humidity (i.e. absolute humidity). Luckily the manufacturer of these sensors,
Alphasense, provides us with that reference data. However, the complexity of the operations performed can not be done
inside the sensing device as it uses advanced operations as well as historical data from the same device. For that reason,
the data needs to be post processed using the Sensors Analysis Framework. The algorithm is in a beta stage and later it will
be applied automatically on the data once it arrives at the platform. More details can be found in the Electrochemical
sensor baseline methodology Section.

This process doesn't require any on-site reference data but requires the data to be processed using the manufacturer
calibration reference per sensor as well as other environmental values as temperature and humidity.

PM sensor

The selected PM sensor is internally characterised by the manufacturer and, it's readings are currently being evaluated.
Preliminarily, the measurements can be as well improved when reference data is available, as some have noted that the PM
sensors can be affected by relative humidity.

Read more on the Plantower PMS 5003 implementation on the PM Sensor Board.

Plantower PMS 5003

13.1Low Cost Sensors Calibration

- 310/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://docs.iscape.smartcitizen.me/Components/Gas%20Pro%20Sensor%20Board/Electrochemical%20Sensors/#sensor-calibration
https://docs.iscape.smartcitizen.me/Components/Gas%20Pro%20Sensor%20Board/Electrochemical%20Sensors/#sensor-calibration
https://docs.iscape.smartcitizen.me/Components/Gas%20Pro%20Sensor%20Board/Electrochemical%20Sensors/#sensor-calibration
https://docs.iscape.smartcitizen.me/Components/Gas%20Pro%20Sensor%20Board/Electrochemical%20Sensors/#sensor-calibration

14. Sensor Platform

14.1 Smart Citizen API
The cloud-based data engine supporting: data ingestion, aggregation and retrieving. It is entirely independent of any web
front-end exposing all the functionalities over a clear REST API. That allows applications to be developed on easily on top
having access to all the features to create complex and rich tools. The main instance its available at api.smartcitizen.me.
You can explore and contribute to the source. One examples of this tools is the Sensors Analysis Framework or the iSCAPE
Virtual Living Lab, both developed during the iSCAPE project) This is free software available under GNU Affero General
Public License (AGPL).

14.1.1 Data Ingestion Flow

As already described in the Supported Assets sections, above, the Platforms supports multiple sensor types and even data
coming from other platforms. On the following section, we describe all the features supported when it comes to sending
data to the platform.

14.1.2 Ingestion protocols

Two protocols are supported for data to be sent to the platform: MQTT and HTTP

MQTT is the one used by constrained devices as the Citizen Sensors and the Living Lab Stations. It allows the devices to
post data to the platform after they are registered. It also allows them to receive configuration options (i.e. sensors reading
interval) and report errors (i.e. sensors are malfunctioning).

HTTP is aimed at applications publishing data to the platform (i.e. an existing sensors platform that also wants to make all
the data available to the platform). This API gives access to all the platform functionalities as it is part of the core Smart
Citizen API. Over this API we are not just limited to publish data but to register new devices or even users.

oth protocols support transport encryption with TLS to ensure secure communication between the client and the server
over the Internet.

14.1.3 Authorisation and authentication

Knowing who posts what is a serious problem when it comes to hundreds of sensor data being published per minute.
Constrained hardware devices using the MQTT API use a unique device token given to the device every time is registered
on the platform. The token authenticates the devices against the platform, and it can be expired at any time to prevent a
device to keep publishing. Instead, the HTTP API supports authentication using an OAuth2 or a private token. Both
mechanisms work at a user level allowing a single process to manage all the devices created by a user.

Check the developers ready API Documentation

TD;LR

•

•

14.Sensor Platform

- 311/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

https://api.smartcitizen.me/
https://github.com/fablabbcn/smartcitizen-api
https://github.com/fablabbcn/smartcitizen-iscape-data
http://https://livinglabs.iscapeproject.eu
http://https://livinglabs.iscapeproject.eu
https://www.iscapeproject.eu/
https://developer.smartcitizen.me/
https://developer.smartcitizen.me/

14.1.4 Kits blueprints

Each device sensors configuration needs to be previously registered on the platform to ensure each datapoint published is
associated with the required metadata. This information is called a Kit blueprint. The minimal blueprint includes all the
necessary data that a user might provide to create a Kit. It is composed of Components, and those can reuse existing
Sensors and Measurements. Sensors are the hardware or software components that record the data. Measurements are
descriptions of what the sensors are recording.

14.1.5 Data Storage

Once the steps above are completed data is stored in a database cluster performing asynchronous masterless replication to
ensure data backup and availability. Each datapoint is stored with the following items:

Component: A reference to the component type that generated the datapoint.

Device: A reference to the device that generated the datapoint.

Raw Data: The datapoint as received to the platform

Processed Data: The datapoint after applying post processing, when implemented.

Timestamp: The time the datapoint was generated. Once stored historical data available via the Smart Citizen API. All the
other services, as the Smart Citizen Webpage, access the data from there. The API also exposes a method where data is
processed to a CSV file and email to the user. That allows loading the data offline to any software capable of dealing with
CSV files (i.e. Microsoft Excel, MATLAB, etc.)

•

•

•

•

•

14.1.4Kits blueprints

- 312/312 - ISCAPE D3.13 Sensor Platforms Documentation (rev 2)

